968 resultados para Central Nervous Systems
Resumo:
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.
Resumo:
The malformations in the amniotic band syndrome (ABS) are due to entrapment of fetal parts by fibrous band in the amniotic sac. Limbs are most commonly affected followed by craniofacial defects in one third of patients. Ocular defects include corneal leukomas and lid colobomas often contiguous with facial clefts, strabismus, hypertelorism, and microphthalmos. Unilateral chorioretinal defects or lacunae are rare findings in the ABS. We report a female infant with such a lacunar defect along with central nervous abnormalities, and discuss the differential diagnosis and the embryopathic implications.
Resumo:
AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.
Resumo:
Epstein-Barr virus (EBV) has been consistently associated with multiple sclerosis (MS), but whether this virus is a trigger of MS remains undetermined. Recently, EBV-infected B cells recognized by activated CD8_ T cells have been detected in the meninges of autopsied MS patients. In addition, a strong EBV-specific CD8_ T cell response in the blood of patients with MS of recent onset was reported. Here, to further explore the putative relationship between MS and EBV, we assessed the EBV-specific cellular and humoral immune responses in the blood and the cerebrospinal fluid (CSF) of patients with early MS or other neurological diseases, separated into inflammatory (IOND) and non-inflammatory (NIOND) groups. The MS non-associated neurotropic herpesvirus cytomegalovirus (CMV) served as a control. Fifty-eight study subjects were enrolled, including 44 patients (13 with early MS (onset of MS less than one year prior to the assay), 15 with IOND and 16 with NIOND) in the immunological arm of the study. The cellular immune response was investigated using a functional CFSE cytotoxic T lymphocyte (CTL) assay performed with short-term cultured EBV- or CMVspecific effector T cells from the CSF and the blood. The humoral immune response specific for these two viruses was also examined in both the blood and the CSF. The recruitment of a given virusspecific antibody in the CSF as compared to the blood was expressed as antibody indexes (AI). We found that, in the CSF of early MS patients, there was an enrichment in EBV-, but not CMV-specific, CD8_ CTL as compared to the CSF of IOND (P_ 0.003) and NIOND patients (P_0.0009), as well as compared to paired blood samples (P_0.005). Additionally, relative viral capsid antigen (VCA)-, but not EBV encoded nuclear antigen 1 (EBNA1)- or CMV-specific, AI were increased in the CSF of early MS as compared to IOND (P_0.002) or NIOND patients (P_0.008) and correlated with the EBVspecific CD8_ CTL responses in the CSF (rs_0.54, P_0.001). Fourteen additional patients were enrolled in the virological arm of the study: using semi-nested PCR, EBV-encoded nuclear RNA1 (EBER1)-a transcript expressed during all stages of EBV infection-was detected in the CSF of 2/4 early MS, but only 1/6 IOND and 0/4 NIOND patients. Altogether, our data suggest that a reactivation of EBV, but not CMV, is taking place in the central nervous system of patients with MS of recent onset. These data significantly strengthen the link between EBV and MS and may indicate a triggering role of EBV in this disease. This work was supported by grants from the Swiss National Foundation and from the Swiss Society for Multiple Sclerosis.
Resumo:
Dorsal root injury leads to reactive gliosis in the spinal cord dorsal root entry zone and dorsal column, two regions that undergo Wallerian degeneration, but have distinct growth-inhibitory properties. This disparity could in part be due to differences in the number of degenerating sensory fibers, differences in glial cell activation, and/or to differential expression of growth-inhibitory molecules such as chondroitin sulfate proteoglycans. Laser capture microdissection of these two spinal cord white matter regions, followed by quantitative analysis of mRNA expression by real-time PCR, revealed that glial marker transcripts were differentially expressed post-injury and that the chondroitin sulfate proteoglycans Brevican and Versican V1 and V2 were preferentially up-regulated in the dorsal root entry zone, but not the dorsal column. These results indicate that reactive gliosis differs between these two regions and that Brevican and Versican are potential key molecules participating in the highly inhibitory properties of the dorsal root entry zone.
Resumo:
Les phacomatoses regroupent des maladies du développement du neurectoderme, engendrant des manifestations cutanées ou du système nerveux central. Les symptômes de ces maladies peuvent affecter les individus atteints à différents moments de leur vie. Il s'agit de maladies, héréditaires ou congénitales, qui sont transmises de façon variable. Effectivement, certaines, telles que la neurofibromatose, la sclérose tubéreuse ou la maladie de von Hippel-Lindau sont autosomiques dominantes, alors que d'autres, telles que la maladie de Sturge-Weber sont sporadiques. Des transmissions autosomiques récessives liées à X ou des formes mosaïques existent également. Une revue de la littérature, comprenant les cinq phacomatoses les plus fréquemment vues par un neurochirurgien (neurofibromatose de type I et II, sclérose tubéreuse de Bourneville, maladie de Sturge-Weber-Krabbe, maladie de von Hippel-Lindau) a été effectuée en se centrant sur le diagnostic, la variabilité de la symptomatologie selon l'âge du patient et son traitement. Les cas de patients adultes et pédiatriques vus aux consultations de neurologie et neurochirurgie de l'hôpital de Lille (France) et Lausanne (Suisse), de 1961 à nos jours, ont été revus pour illustrer les différentes pathologies rencontrées, selon l'âge des patients atteints. Le phénotype de ces maladies se modifie avec l'âge, car les gènes incriminés sont des gènes impliqués dans la différentiation tissulaire et sont activés à des âges différents suivant les tissus. Le rôle du neurochirurgien sera variable selon l'âge et le syndrome du patient. Il importe de connaître les variations du phénotype de ces maladies avec l'âge ainsi que les conséquences à long terme des traitements pour proposer au patient un suivi neurochirurgical personnalisé. Phacomatoses, or neurocutaneous disorders, are a group of congenital and hereditary diseases characterized by developmental lesions of the neuroectoderm, leading to pathologies affecting the skin and the central nervous system. There is a wide range of pathologies affecting individuals at different moments of life. The genetics is variable: while neurofibromatosis 1 and 2, tuberous sclerosis and von Hippel-Lindau disease are all inherited as autosomal dominant traits, Sturge-Weber syndrome is sporadic. Other neurocutaneous disorders can be inherited as autosomal recessive traits (i.e., ataxia-telangiectasia), X-linked (i.e., incontinentia pigmenti) or explained by mosaicism (i.e., hypomelanosis of Ito, McCune-Albright syndrome). In this review, we discuss the major types of neurocutaneous disorders most frequently encountered by the neurosurgeon and followed beyond childhood. They include neurofibromatosis types 1 and 2, tuberous sclerosis, Sturge-Weber syndrome and von Hippel-Lindau disease. In each case, a review of the literature, including diagnosis, genetics and treatment will be presented. The lifespan of the disease with the implications for neurosurgeons will be emphasized. A review of cases, including both pediatric and adult patients, seen in neurosurgical practices in the Lille, France and Lausanne, Switzerland hospitals between 1961 and 2007 is presented to illustrate the pathologies seen in different age-groups. Because the genes mutated in most phacomatoses are involved in development and are activated following a timed schedule, the phenotype of these diseases evolves with age. The implication of the neurosurgeon varies depending on the patient's age and pathology. While neurosurgeons tend to see pediatric patients affected with neurofibromatosis type 1, tuberous sclerosis and Sturge-Weber syndrome, there will be a majority of adult patients with von Hippel-Lindau disease or neurofibromatosis type 2
Resumo:
SUMMARY : The present work addresses several aspects of cell cycle regulation, cell fate specification and cell death in the central nervous system (CNS), specifically the cortex and the retina. More precisely, we investigated the role of Bmi1, a polycomb family gene required for stem cell proliferation and self-renewal, in the development of the cerebral cortex, as well as in the genesis of the retina. These data, together with studies published during the last two decades concerning cell cycle re-activation in apoptotic neurons in the CNS, raised the question of a possible link between regulation of the cell cycle during development and during retinal degeneration. 1. The effects of Bmi1 loss in the cerebral cortex : Consistently with our and others' observations on failure of Bmi9-/- stem cells to proliferate and self-renew in vitro, the Bmi9-/- cerebral cortex presented slight defects in proliferation in stem/progenitor cells compartments in vivo. This was in accordance with the pattern of Bmi1 expression in the developing forebrain. The modest proliferation defects, compared to the drastic consequences of Bmi9 loss in vitro, suggest that cell-extrinsic mechanisms may partially compensate for Bmi1 deletion in vivo during cortical histogenesis. Nevertheless, we observed a decreased proliferating activity in neurogenic regions of the adult telencephalon, more precisely in the subventricular zone, showing that Bmi1 controls neural stem/progenitor proliferation during adulthood in vivo. Our data also highlight an increased production of astrocytes at birth, and a generalized gliosis in the adult Bmi9-/- brain. Importantly, glial progenitors and astrocytes retained the ability to proliferate in the absence of Bmi1. 2. The effects of Bmi1 loss in the retina : The pattern of expression of Bmi1 during development and in the adult retina suggests a role for Bmi1 in cell fate specification and differentiation rather than in proliferation. While the layering and the global structure of the retina appear normal in Bmi1 /adult mice, immunohistochemìcal analysis revealed defects in the three major classes of retinal interneurons, namely: horizontal, bipolar and amacrine cells. Electroretinogram recordings in Bmi9-/- mice are coherent with the defects observed at the histological level, with a reduced b-wave and low-profile oscillatory potentials. These results show that Bmi1 controls not only proliferation, but also cell type generation, as previously observed in the cerebellum. 3. Cell cycle events and related neuroprotective strategies in retinal degeneration : In several neurodegenerative disorders, neurons re-express cell cycle proteins such as cyclin dependent kinases (Cdks) prior to apoptosis. Here, we show for the first time that this is also the case during retinal degeneration. Rd1 mice carry a recessive defect (Pdeóbrd/rd) that causes retinal degeneration and serves as a model of retinitis pigmentosa. We found that photoreceptors express Cdk4 and Cdk2, and undergo DNA synthesis prior to cell death. To interfere with the reactivation of Cdk-related pathways, we deleted E2fs or Brni1, which normally allow cell cycle progression. While deleting E2f1 (downstream of Cdk4/6) in Rd1 mice provides only temporary protection, knocking out Bmi1 (upstream of Cdks) leads to an extensive neuroprotective effect, independent of p16ink4a or p19arf, two tumor suppressors regulated by Bmi1. Analysis of Cdks and the DNA repair-related protein Ligase IV showed that Bmi1 acts downstream of DNA repair events and upstream of Cdks in this neurodegenerative mechanism. Expression of Cdks during an acute model of retinal degeneration, light damage-induced photoreceptor death, points to a role for Bmi1 and cell cycle proteins in retinal degeneration. Considering the similarity with the cell cycle-related apoptotic pathway observed in other neurodegenerative diseases, Bmi1 is a possible general target to prevent or delay neuronal death. RESUME : Ce travail aborde plusieurs aspects de la régulation du cycle cellulaire, de la spécification du devenir des cellules et de la mort cellulaire dans le système nerveux centrale (SNC), plus particulièrement dans le cortex cérébral et dans la rétine. Nous nous sommes intéressés au gène Bmi1, appartenant à la famille polycomb et nécessaire à la prolifération et au renouvellement des cellules souches. Nous avons visé à disséquer son rôle dans le développement du cortex et de la rétine. Ces données, ainsi qu'une série de travaux publiés au cours des deux dernières décennies concernant la réactivation du cycle cellulaire dans les neurones en voie d'apoptose dans le SNC, nous ont ensuite poussé à chercher un lien entre la régulation du cycle cellulaire pendant le développement et au cours de la dégénérescence rétinienne. 1. Les effets de l'inactivation de Bmi1 dans le cortex cérébral : En accord avec l'incapacité des cellules souches neurales in vitro à proliférer et à se renouveler en absence de Bmi1, le cortex cérébral des souris Bmi1-/- présente de légers défauts de prolifération dans les compartiments contenant les cellules souches neurales. Ceci est en accord avec le profil d'expression de Bmi1 dans le télencéphale. Les conséquences de la délétion de Bmi1 sont toutefois nettement moins prononcées in vivo qu'in vitro ; cette différence suggère l'existence de mécanismes pouvant partiellement compenser l'absence de Bmi1 pendant la corticogenèse. Néanmoins, l'observation d'une réduction de la prolifération dans la zone sous-ventriculaire, la zone majeure de neurogenèse dans le télencéphale adulte, montre que Bmi1 contrôle la prolifération des cellules souche/progénitrices neurales chez la souris adulte. Nos résultats démontrent par ailleurs une augmentation de la production d'astrocytes à la naissance ainsi qu'une gliose généralisée à l'état adulte chez les souris Bmi1-/-. Les progéniteurs gliaux et les astrocytes conservent donc leur capacité à proliférer en absence de Bmi1. 2. Les effets de l'inactivation de Bmi1 dans la rétine : Le profil d'expression de Bmi1 pendant fe développement ainsi que dans la rétine adulte suggère un rôle de Bmi1 dans la spécification de certains types cellulaires et dans la différentiation plutôt que dans la prolifération. Alors que la structure et la lamination de la rétine semblent normales chez les souris Bmi1-/-, l'analyse par immunohistochimie amis en évidence des défauts au niveau des trois classes d'interneurones rétiniens (les cellules horizontales, bipolaires et amacrines). Les électrorétinogrammes des souris Bmi1-/- sont cohérents avec les défauts observés au niveau histologique et montrent une réduction de l'onde « b » et des potentiels oscillatoires. Ces résultats montrent que Bmi1 contrôle la génération de certaines sous-populations de neurones, comme démontré auparavant au niveau de cervelet. 3. Réactivation du cycle cellulaire et stratégies théraoeutiaues dans les dégénérescences rétiniennes : Dans plusieurs maladies neurodégénératives, les neurones ré-expriment des protéines du cycle cellulaire telles que les kinases cycline-dépendantes (Cdk) avant d'entrer en apoptose. Nous avons démontré que c'est aussi le cas dans les dégénérescences rétiniennes. Les souris Rd1 portent une mutation récessive (Pde6brd/rd) qui induit une dégénérescence de la rétine et sont utilisées comme modèle animal de rétinite pigmentaire. Nous avons observé que les photorécepteurs expriment Cdk4 et Cdk2, et entament une synthèse d'ADN avant de mourir par apoptose. Pour interférer avec la réactivation les mécanismes Cdk-dépendants, nous avons inactivé les gènes E2f et Bmi1, qui permettent normalement la progression du cycle cellulaire. Nous avons mis en évidence que la délétion de E2f1 (en aval de Cdk4/6) dans les souris Rd1 permet une protection transitoire des photorécepteurs. Toutefois, l'inactivation de Bmi1 (en amont des Cdk) est corrélée à une neuroprotection bien plus durable et ceci indépendamment de p16ink4a et p19arf, deux suppresseurs de tumeurs normalement régulés par Bmi1. L'analyse des Cdk et de la ligase IV (une protéine impliquée dans les mécanismes de réparation de l'ADN) a montré que Bmi1 agit en aval des événements de réparation de l'ADN et en amont des Cdk dans la cascade apoptotique dans les photorécepteurs des souris Rd1. Nous avons également observé la présence de Cdk dans un modèle aigu de dégénérescence rétinienne induit par une exposition des animaux à des niveaux toxiques de lumière. Nos résultats suggèrent donc un rôle général de Bmi1 et des protéines du cycle cellulaire dans les dégénérescences de la rétine. Si l'on considère la similarité avec les événements de réactivation du cycle cellulaire observés dans d'autres maladies neurodégénératives, Bmi1 pourrait être une cible thérapeutique générale pour prévenir la mort neuronale.
Varicella Zoster Virus CNS disease in hematopoietic cell transplantation: A single center experience
Resumo:
Background: Varciella Zoster Virus (VZV) can lead to serious complications in Hematopoietic Cell Transplant (HCT) recipients. Central nervous system (CNS) VZV can be one of the most devastating infections in transplant recipients, yet little is known about this rare disease. Objectives: To describe CNS VZV in the post-transplant period and to define potential risk factors in the HCT population. Methods: We reviewed the course of all patients who received a first HCT at the Fred Hutchinson Cancer Center (FHCRC) in Seattle, WA from 1/1996 through 12/2007. Data were collected retrospectively using the Long-Term Follow-Up database, which includes on-site examinations, outside records, laboratory tests, and yearly questionnaires. Patients were classified as CNS VZV if they had laboratory confirmation of VZV in the cerebrospinal fluid (CSF), or had zoster with associated clinical and laboratory findings consistent with CNS disease. Results: A total of six patients developed VZV CNS disease during the evaluation period (table 1). Diagnosis was confirmed in 3/6 by detection of VZV in CSF by PCR. All other patients had a clinical diagnosis based on the presence of CNS symptoms, zoster, lymphocytic pleiocytosis, and response to IV acyclovir. Patients who developed CNS disease had a mean age of 42 years (range 34-51) at time of transplant. CNS disease developed at a mean of 9 months posttransplantation (range 0.5-24 months), and severity varied, ranging from meningitis (3/6) to encephalitis/myelitis (3/6). All had active graft-versus host disease (GHVD) and all were being treated with immunosuppressive therapy at time of diagnosis. Fever and headache were the most common symptoms, but patients who developed focal CNS findings or seizures (3/6) had a more complicated clinical course. While most patients presented with classic VZV/zoster skin lesions, 2/6 patients had no dermatologic findings associated with their presentation. Four (66%) of patients who developed VZV CNS disease died, two related to VZV complications despite aggressive antiviral therapy. Conclusions: In this cohort of HCT patients, VZV CNS disease was a rare complication. Mortality due to CNS VZV is high, particularly in patients who develop focal neurologic findings or seizures. Even in the absence of skin lesions, VZV CNS disease should be considered in patients who develop fevers and neurologic symptoms.
Resumo:
Autophagy is a cellular mechanism for degrading proteins and organelles. It was first described as a physiological process essential for cellular health and survival, and this is its role in most cells. However, it can also be a mediator of cell death, either by the triggering of apoptosis or by an independent "autophagic" cell death mechanism. This duality is important in the central nervous system, where the activation of autophagy has recently been shown to be protective in certain chronic neurodegenerative diseases but deleterious in acute neural disorders such as stroke and hypoxic/ischemic injury. The authors here discuss these distinct roles of autophagy in the nervous system with a focus on the role of autophagy in mediating neuronal death. The development of new therapeutic strategies based on the manipulation of autophagy will need to take into account these opposing roles of autophagy.
Resumo:
Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.
Resumo:
ABSTRACT: BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Resumo:
BACKGROUND: Potential drug-drug interactions (PDDIs) might expand with new combination antiretroviral therapies (ART) and polypharmacy related to increasing age and comorbidities. We investigated the prevalence of comedications and PDDIs within a large HIV cohort, and their effect on ART efficacy and tolerability. METHODS: All medications were prospectively recorded in 1,497 ART-treated patients and screened for PDDIs using a customized version of the Liverpool drug interactions database. RESULTS: Overall, 68% (1,013/1,497) of patients had a comedication and 40% (599/1,497) had > or = 1 PDDI. Among patients with comedication, 2% (21/1,013) had red-flag interactions (contraindicated) and 59% (597/1,013) had orange-flag interactions (potential dose adjustment and/or close monitoring required). The latter involved mainly central nervous system drugs (49%), cardiovascular drugs (34%) and methadone (19%). In the multivariate analysis, factors associated with having a comedication were advanced age, female gender, obesity and HCV infection. Independent risk factors for PDDIs were regimens combining protease inhibitors and non-nucleoside reverse transcriptase inhibitors (odds ratio [OR] 3.06, 95% confidence interval [CI] 1.44-6.48), > or = 2 comedications (OR 1.89, 95% CI 1.32-2.70), current illicit drug use (OR 2.00, 95% CI 1.29-3.10) and patients with HCV infection (OR 1.74, 95% CI 1.19-2.56). Viral response was similar in patients with and without PDDIs (84.5% versus 86.4%; P=0.386). During follow-up, ART was modified in 134 patients with comedication regardless of the presence of PDDIs (P=0.524). CONCLUSIONS: PDDIs increase with complex ART and comorbidities. No adverse effect was noted on ART efficacy or tolerability; however, most PDDIs affected comedication but were manageable through dose adjustment or monitoring.
Resumo:
Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.
Resumo:
BACKGROUND: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. OBJECTIVE: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. METHODS: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects. RESULTS: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. CONCLUSIONS: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Resumo:
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS. GLIA 2014;62:1125-1141.