977 resultados para Cement.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To use profilometry to assess the margin surface profile of all-ceramic crowns (ACC’s) at try-in and 1-week after cementation with dual-cured resin (DC, RelyX ARC, 3 M ESPE, St. Paul, MN, USA), self-adhesive dual-cured resin (SADC, RelyX Unicem, 3 M ESPE), light-cured resin (LC, RelyX Veneer, 3 M ESPE) or chemically cured resin-modified glass ionomer (RMGI, RelyX Luting Plus, 3 M ESPE) luting cement. Methods: Forty, sound, extracted, human, premolar teeth underwent a standardised preparation for ACC’s. IPS Empress (Ivoclar-Vivadent, Liechtenstein) crowns of standard dimensions were fabricated and 10 luted with each cement and stored in water for 7 days. Three groups of serial profiles were taken, the first of the tooth preparation, the second of the crown margins at try-in and lastly of the crown margins after cementation and 7 days water storage. Results: There were no significant differences in the crown margin surface profile between the four cement groups at try-in. The change in crown margin position between try-in and post-cementation was significantly greater for DC than for LC and RMGI. SADC was not significantly different to the other cements. There were no significant differences in the crown margin extensions between the four cement groups, however most of the IPS Empress ACC’s in this study were underextended but this was not statistically significant. Conclusions: IPS Empress ACC’s seated more fully with LC and RMGI than with DC cement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsol™, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SOconcentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of seven test methods was used to assess the effectiveness of curing on C30 and C50 Portland cement concretes. Curing was by formwork retention, wrapping in wet hessian or wrapping in polythene for periods of between one and seven days. Specimens from each mix were also subjected to both air and water storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely accepted that concrete designed to perform satisfactorily in adverse environmental conditions must have a high cement content and a low water-cement ratio. In addition, in order to enhance its durability, many types of additive and admixture such as super-plasticizers, fly ash, silica fume, ggbfs, etc., have been used in the past. However, a close study of the published literature indicates that the effect of mix variables on the durability and the interaction between the various ingredients are not fully understood. Some of these apparent contradictions are due to the limitations in the design of the experimental programme. For instance, it is evident that relatively higher concentrations of aggregates increase the tortuosity of the flow path and hence reduce the permeability, which results in an improvement in the durability. Therefore, an increase in cement content without a proportional decrease in water-cement ratio may reduce the durability. In such cases, the interactive effects of factors can be established by resorting to a properly designed experimental programme, such as the factorial experimental design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) as aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase II, which is reported here, investigated concrete paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective, as was the case with concrete building blocks, was to replicate the process used by industry in fabricating concrete paving blocks in the laboratory. The compaction technique used involved vibration and pressure at the same time, i.e. a vibro-compaction technique. An electric hammer used previously for building blocks was not sufficient for adequate compaction of paving blocks. Adequate compaction could only be achieved by using the electric hammer while the specimens were on a vibrating table. The experimental work involved two main series of tests, i.e. paving blocks made with concrete- and masonry-derived aggregate. Variables that were investigated were level of replacement of (a) coarse aggregate only, (b) fine aggregate only, and (c) both coarse and fine aggregate. Investigation of mechanical properties, i.e. compressive and tensile splitting strength, of paving blocks made with recycled demolition aggregate determined levels of replacement which produced similar mechanical properties to paving blocks made with newly quarried aggregates. This had to be achieved without an increase in the cement content. The results from this research programme indicate that recycled demolition aggregate can be used for this new higher value market and therefore may encourage demolition contractors to develop crushing and screening facilities for this. (C) 2011 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (˜100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strength development of mortars containing ground granulated blast-furnace slag (ggbs) and portland cement was investigated. Variables were the level of ggbs in the binder, water-binder ratio and curing temperature. All mortars gain strength more rapidly at higher temperatures and have a lower calculated ultimate strength. The early age strength is much more sensitive to temperature for higher levels of ground granulated blast-furnace slag. The calculated ultimate strength is affected to a similar degree for all ggbs levels and water-binder ratios, with only the curing temperature having a significant effect. Apparent activation energies were determined according to ASTM C1074 and were found to vary approximately linearly with ggbs level from 34 kJ/mol for portland cement mortars to around 60 kJ/mol for mortars containing 70% ggbs. The water-binder ratio appears to have little or no effect oil the apparent activation energy. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of incorporating pulverized fuel ash (PFA) and ground granulated blastfurnace slag (ggbs) on the workability (slump), adiabatic temperature rise during hydration and long-term (up to 570 days) strength of high-strength concretes have been measured. Binary (PFA/ggbs and Portland cement) and ternary (PFA/ggbs plus microsilica and Portland cement) blends at water-binder ratios from 0.38 to 0.20 have been tested. The results show broadly similar effects to those in lower strength concrete, although of differing magnitude in some cases. Some potential advantages of ternary blends for optimization of properties have been demonstrated.