987 resultados para Carpenter, Matthew H. (Matthew Hale), 1824-1881.
Resumo:
Early on Christmas morning 1974, tropical cyclone Tracy devastated the city of Darwin leaving only 6 per cent of the city’s housing habitable and instigating the evacuation of 75 per cent of its population. The systematic failure of so much of Darwin’s building stock led to a humanitarian disaster that proved the impetus for an upheaval of building regulatory and construction practices throughout Australia. Indeed, some of the most enduring legacies of Tracy have been the engineering and regulatory steps taken to ensure the extent of damage would not be repeated. This chapter explores these steps and highlights lessons that have led to a national building framework and practice at the fore of wind-resistant design internationally.
SWIRLnet : portable anemometer network for wind speed measurements of land-falling tropical cyclones
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Tropical cyclone wind speeds impacting communities are often ‘guestimated’ from analyzing damaged structures. A re-locatable anemometer system is required to enable measurements of wind speeds. This paper discusses design criteria of the tripods and tie down system, proposed deployment of the anemometers, instrumentation, and data logging. Preliminary assessment of the anemometer response indicates a reliable system for 1 second response, however, it is noted that the Australian building code and wind loading standard uses a moving average time of approximately 0.2 seconds for its wind speed design criteria.
Resumo:
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.
Resumo:
Convectively driven downburst winds pose a threat to structures and communities in many regions of Australia not subject to tropical cyclones. Extreme value analysis shows that for return periods of interest to engineering design these events produce higher gust wind speeds than synoptic scale windstorms. Despite this, comparatively little is known of the near ground wind structure of these potentially hazardous windstorms. With this in mind, a series of idealised three-dimensional numerical simulations were undertaken to investigate convective storm wind fields. A dry, non-hydrostatic, sub-cloud model with parameterisation of the microphysics was used. Simulations were run with a uniform 20 m horizontal grid resolution and a variable vertical resolution increasing from 1 m. A systematic grid resolution study showed further refinement did not alter the morphological structure of the outflow. Simulations were performed for stationary downbursts in a quiescent air field, stationary downbursts embedded within environmental boundary layer winds, and also translating downbursts embedded within environmental boundary layer winds.
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.
Resumo:
Impinging flow occurs when a fluid impacts a comparatively solid boundary upon which divergence occurs. A perfect example of an impinging flow is the impact and divergence of air at ground level during a thunderstorm outflow. The importance of modelling thunderstorm outflows, and in particular the downburst is now well-known to the wind engineering community and research into many of its characteristics is underway throughout the world. The reader is directed to the text by Fujita [I] for an introduction to downburst concepts and theory.
Resumo:
A thunderstorm downburst in its simplest form can be modelled as a steady flow impinging air jet. Although this simplification neglects some important atmospheric and physical parameters it has proven to be a useful tool for understanding the kinematics of these events. Assuming this simple impinging jet model also allows numerical models to be developed which can be directly compared with experimental results to validate the use of CFD. Confidence gained from these simulations will allow the use of more complex atmospheric impinging jet models that cannot be directly validated. Thunderstorm downbursts are important for wind engineers because in many parts of the world they produce the design wind speeds used in design standards, but are not structurally represented in these documents.
Resumo:
The potential impacts of extreme water level events on our coasts are increasing as populations grow and sea levels rise. To better prepare for the future, coastal engineers and managers need accurate estimates of average exceedance probabilities for extreme water levels. In this paper, we estimate present day probabilities of extreme water levels around the entire coastline of Australia. Tides and storm surges generated by extra-tropical storms were included by creating a 61-year (1949-2009) hindcast of water levels using a high resolution depth averaged hydrodynamic model driven with meteorological data from a global reanalysis. Tropical cyclone-induced surges were included through numerical modelling of a database of synthetic tropical cyclones equivalent to 10,000 years of cyclone activity around Australia. Predicted water level data was analysed using extreme value theory to construct return period curves for both the water level hindcast and synthetic tropical cyclone modelling. These return period curves were then combined by taking the highest water level at each return period.