991 resultados para Carnegie Steel Company.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The China Low Activation Martensitic (CLAM) steel has been developed as a candidate structural material for future fusion reactors. It is essential to investigate the evolution of microstructure and changes of mechanical properties of CLAM steel during thermal exposure. In this study, the long-term thermal aging of the CLAM steel has been carried out in air at 600 °C and 650 °C for 1100 h, 3000 h and 5000 h. The microstructural evolution with aging time was studied, including characteristics of the growth of M23C6 carbides and the formation of Laves-phase precipitates as well as the evolved subgrains. The microstructural evolution leads to the changes of mechanical properties of the CLAM steel. The Ductile–Brittle Transition Temperature (DBTT) increases significantly during the thermal aging, which is related to the formation of Laves-phase in the steel matrix. The possible mechanism of stabilizing microstructure during the thermal exposure has been analyzed based on the interaction between M23C6 carbides and subgrain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (–30 °C), which could be further reduced by purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides. In the present work, the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated. Nitrides could hardly be observed when the steel was tempered at 650°C. When the tempering temperature was increased to 700°C and 750°C, a large amount of nitrides were observed in the matrix. It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules. The ductile-brittle transition temperature (DBTT) was also discovered to decrease from room temperature to −50°C when the tempering temperature was increased from 650°C to 750°C. The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design optimization of cold-formed steel portal frame buildings is considered in this paper. The objective function is based on the cost of the members for the main frame and secondary members (i.e., purlins, girts, and cladding for walls and roofs) per unit area on the plan of the building. A real-coded niching genetic algorithm is used to minimize the cost of the frame and secondary members that are designed on the basis of ultimate limit state. It iis shown that the proposed algorithm shows effective and robust capacity in generating the optimal solution, owing to the population's diversity being maintained by applying the niching method. In the optimal design, the cost of purlins and side rails are shown to account for 25% of the total cost; the main frame members account for 27% of the total cost, claddings for the walls and roofs accounted for 27% of the total cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimisation is based on a combination of neural networks and evolutionary algorithm. It has selected buildings with different midpoint configurations with zero carbon impacts. With operational energy included the structures could be offset with asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristic properties are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150°C. However, the copper was separately scattered after heating at 1000°C. The forming mechanisms of copper coating will be discussed in detail. By choosing proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no binding problem.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristics are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150°C. However, the copper was separately scattered in and under the surface rust after heating at 1000°C. The forming mechanisms of copper coating are discussed in detail. By choosing a proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no bonding problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach for global detection of seismic damage in a single-storey steel concentrically braced frame (CBF) structure is presented. The filtered lateral in-plane acceleration response of the CBF structure is integrated twice to provide the lateral in-plane displacement which is used to infer buckling and yielding damage. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated lateral in-plane displacement limits. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. This pre-processing results in reliable numerical integration of the frame acceleration that predicts the displacement response accurately when compared to the measured lateral displacement of the CBF structure. Importantly, the structural damage is not assumed through removal of bracing members, rather damage is induced through actual seismic loading. The buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify the initiation of buckling and yielding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compressive strength, Young's modulus (stiffness), stress-strain curve and energy absorption capacity (toughness). The effects of two parameters, namely steel fiber volume content (0%, 0.5%, 1%, 1.5%) and temperature (room temperature, 200 °C, 400 °C and 600 °C) on the compressive mechanical properties of concrete were investigated. The test results show that both compressive strength and stiffness of the concrete are significantly reduced after exposure to high temperatures. The addition of steel fibers is helpful in preventing spalling, and significantly improves the ductility and the cracking behavior of recycled aggregate concrete (RAC) after exposure to high temperatures, which is favorable for the application of RAC in building construction.