978 resultados para Carbon dioxide in the Atlantic Ocean
Resumo:
This thesis is an outcome of the studies, carried out by the author on the Equatorial Undercurrent and the Equatorial Jet, an interesting and unique phenomenon discovered, recently, in the Indian Ocean (wyrtxi, 1973). The main objective of the thesis is to carry out a detailed investigation of the seasonal, latitudinal and longitudinal variation of the Equatorial Undercurrent in the Indian Ocean and also the Equatorial Jet, through mapping the vertical distribution of the oceanographic properties across the equator along various longitudes for all the months of an year, between SON and SOS, utilising the oceanographic data collected during the International Indian Ocean Expedition and subsequently in the equatorial Indian Ocean. As the distribution of the hydrographic properties give only a qualitative identification of the Undercurrent, a novel technique of computing the zonal flux through bivariate distribution of salinity and thermosteric anomaly introduced by Montgomery and Stroup (1962), is adopted in order to have a quantitative variation of the Equatorial Undercurrent and the Equatorial Jet. Finally, an attempt is made to give a plausible explanation of the features observed.
Resumo:
The present thesis is an attempt by the researcher to Investigate the surface circulation of the Indian Ocean, north of 2095 in relation to the atmospheric circulation over the ocean. The aim is achieved by working out the circu1ation pattern and correlating it with the computed wind stress and its vorticity. The month wise surface circulation is arrived by drawing the streamlines, using freshand method with superimposed isotache. The zonal ad meridional componance of the wind stress and the curl of the wind stress are computed for each month over 2° latitude longitude quadrangle from the bulk aerodynamic formula, using a computer program. The data for drawing the surface circu1ation and for computing the wind stress and its curl have come from the Dutch Atlas.
Resumo:
We explore the potential predictability of rapid changes in the Atlantic meridional overturning circulation (MOC) using a coupled global climate model (HadCM3). Rapid changes in the temperature and salinity of surface water in the Nordic Seas, and the flow of dense water through Denmark Strait, are found to be precursors to rapid changes in the model's MOC, with a lead time of around 10 years. The mechanism proposed to explain this potential predictability relies on the development of density anomalies in the Nordic Seas which propagate through Denmark Strait and along the deep western boundary current, affecting the overturning. These rapid changes in the MOC have significant, and widespread, climate impacts which are potentially predictable a few years ahead. Whilst the flow through Denmark Strait is too strong in HadCM3, the presence of such potential predictability motivates the monitoring of water properties in the Nordic Seas and Denmark Strait.
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.
Resumo:
Europe is a densely populated region that is a significant global source of black carbon (BC) aerosol, but there is a lack of information regarding the physical properties and spatial/vertical distribution of rBC in the region. We present the first aircraft observations of sub-micron refractory BC (rBC) aerosol concentrations and physical properties measured by a single particle soot photometer (SP2) in the lower troposphere over Europe. The observations spanned a region roughly bounded by 50° to 60° N and from 15° W to 30° E. The measurements, made between April and September 2008, showed that average rBC mass concentrations ranged from about 300 ng m−3 near urban areas to approximately 50 ng m−3 in remote continental regions, lower than previous surface-based measurements. rBC represented between 0.5 and 3% of the sub-micron aerosol mass. Black carbon mass size distributions were log-normally distributed and peaked at approximately 180 nm, but shifted to smaller diameters (~160 nm) near source regions. rBC was correlated with carbon monoxide (CO) but had different ratios to CO depending on location and air mass. Light absorption coefficients were measured by particle soot absorption photometers on two separate aircraft and showed similar geographic patterns to rBC mass measured by the SP2. We summarize the rBC and light absorption measurements as a function of longitude and air mass age and also provide profiles of rBC mass concentrations and size distribution statistics. Our results will help evaluate model-predicted regional rBC concentrations and properties and determine regional and global climate impacts from rBC due to atmospheric heating and surface dimming.
Resumo:
The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase