970 resultados para Carbon Compounds, Inorganic
Resumo:
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 µM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 µM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as "semi-labile" DOM. The "semi-labile" pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.
Resumo:
Microbially mediated redox diagenetic processes in marine sediments are reflected in the amount and carbon isotopic composition of dissolved CO2 and CH4 (Claypool and Kaplan, 1974). Oxidation of organic matter gives rise to dissolved CO2 with about the same 13C/12C ratio as the starting organic matter. Subsequent reduction of CO2 to form CH4 involves a large (~70) kinetic isotopic effect, resulting in significant 13C depletion in the CH4, and 13C enrichment in the residual CO2. Ocean Drilling Program Leg 174A (offshore New Jersey) presented an opportunity to study these processes in shelf and upper slope sediments. Holes 1071A-1071D, 1071F, and 1072A were drilled on the shelf in water depths of 88.0-98.1 m. Hole 1073A was drilled on the slope in 639.4 m of water. Pore-water samples were collected for analysis at all three sites, whereas gas samples could only be obtained from Hole 1073A on the slope.
Resumo:
Data are presented on concentrations of aliphatic and polycyclic aromatic hydrocarbons (AHC and PAH) in interstitial waters and bottom sediments of the Kara Sea compared to distribution of particulate matter and organic carbon. It was found that AHC concentrations within the water mass (aver. 16 µg/l) are mainly formed by natural processes. Distribution of AHC represents variability of hydrological and sedimentation processes in different regions of the sea. The widest ranges of the concentrations occurred in the Obskaya Guba - Kara Sea section: in water (10-310 µg/l for AHC and 0.4-7.2 ng/l for PAH) and in the surface layer of the bottom sediments (8-42 µg/l for AHC and 9-94 ng/g for PAH). Differentiation of hydrocarbons (HC) in different media follows regularities typical for marginal filters; therefore no oil and pyrogenic compounds are supplied to the open sea. In sediments contents of HC depend on variations in redox conditions in sediments and on their composition.
Resumo:
Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.