955 resultados para Cancer -- Immunological aspects.
Resumo:
A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neo(R) (neomycin resistance) and lacZ genes. The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacE gene codes for β-D-galactosidase, and cells expressing this gene stain blue with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human tumour cells is a powerful means of studying human cancer cell invasion and metastases in vivo.
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
Two in vitro and two in vivo assays for the study of human cancer invasion and metastasis are described. The assays include in vitro invasiveness through an artificial basement membrane (Matrigel®), invasiveness and metastasis in nude mice of subcutaneously injected LacZ-transduced human tumor cells, in vitro adherence to basement membrane components, and LacZ-transduced human cancer cells injected intravenously into nude mice. In studies of the processes involved in human cancer cell invasion and metastasis, these four assays were found to be complementary, and thus provide a set of test systems for preclinical screening of agents which interfere with these processes.
Resumo:
MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-β, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymphnode metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.
Resumo:
In human breast cancer (HBC), as with many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. To determine the tissue source of the most relevant MMPs, we xenografted HBC cell lines and HBC tissues into the mammary fat pad (MFP) or bone of immunocompromised mice and measured the expression of human and mouse MMP-2, -9, -11, -13, membrane-type-1 MMP (MT1-MMP), MT2-MMP and MT3-MMP by species-specific real-time quantitative RT-PCR. Our data confirm a stromal origin for most tumour-associated MMPs and indicate marked and consistent upregulation of stromal (mouse) MMP-13 and MT1-MMP in all xenografts studied, irrespective of implantation in the MFP or bone environments. In addition, we show increased expression of both human MMP-13 and human MT1-MMP by the MDA-MB-231 tumour cells grown in the MFP compared to in vitro production. MMP protein and activity data confirm the upregulation of MMP mRNA production and indicate an increase in the activated MMP-2 species as a result of tumour implantation. These data directly demonstrate tumour induction of MMP production by stromal cells in both the MFP and bone environments. These xenografts are a valuable means for examining in vivo production of MMPs and suggest that MMP-13 and MT1-MMP will be relevant targets for inhibiting breast cancer progression.
Resumo:
The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.
Resumo:
The current understanding of the regulation of breast cancer cell proliferation and invasiveness by hormones and growth factors is reviewed. It has been shown that polypeptide growth factors are involved in hormone-independent breast cancer, and are sometimes oestrogen-regulated in hormone-responsive models. Basement-membrane invasiveness, relating to the metastatic potential of these cells, is also stimulated by oestrogen in hormone-dependent models, elevated in hormone-independent models, and is growth factor sensitive. Further understanding of the differential effects of growth factors on breast cancer cell proliferation and invasiveness should facilitate better therapeutic exploitation of regulation at this level.
Resumo:
Breast cancer is characterized by hormonal regulation. The current article reviews the role of estrogen and polypeptide growth factors in control of proliferation and basement membrane invasion of breast cancer cells in vitro. The role of antiestrogens to regulate proliferation, invasion, and growth factor secretion is further highlighted. Finally, the use of in vitro cultures of breast cancer cells to model steps in the malignant progression of the disease is emphasized. The availability of hormone dependent and independent breast cancer cell lines should allow screening for better antiestrogens, antimetastatic drugs, and antagonists of local action of growth factors.