970 resultados para CGTase purification
Resumo:
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect
Resumo:
The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.
Resumo:
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.
Resumo:
We performed a case-control study to determine the association of BK plasma viremia with hemorrhagic cystitis (HC) in hematopoietic cell transplant (HCT) recipients. Thirty cases of HC (14 of which occurred after platelet engraftment with documented BK viruria [BK-HC]) were compared with matched controls. Weekly plasma samples were tested for BK virus DNA by polymerase chain reaction (PCR). BK viremia detected before or during the disease was independently associated with HC (adjusted odds ratio = 30, P < .001); BK viremia was even important before clinical symptoms of HC occurred (odds ratio = 11, P < .001). Cases of HC and BK-HC had a significantly higher peak of BK plasma viral load than controls. BK virus was detected by in situ hybridization in bladder biopsies of 2 cases with severe HC and long-lasting BK viremia. BK virus seems to play a role in the development of HC and quantitative detection of BK DNA in plasma appears to be a marker of BK virus disease in HCT recipients.
Resumo:
Carcinoembryonic antigen (CEA) was identified in perchloric acid (PCA)_extract from normal colon mucosa by 2 immunological criteria: a line of identity in double diffusion and a parallel inhibition curve in radioimmunoassay (RIA), both with reference colon carcinoma-CEA (CEA-Tu). The average concentration of CEA in normal colon mucosa (CEA-No) was 35 times lower than in primary large bowel carcinomas and 230 times lower than in metastatic colon or rectum carcinomas. CEA-No was purified from PCA extracts of normal colon mucosa by Sephadex G-200 filtration and immunoadsorbent columns. Purified CEA-No had quatitatively the same inhibition activity in RIA as the British Standard CEA coded 73/601. Purified CEA-No was labelled with 125I. The percentage of binding of labelled CEA-No to a specific goat anti-CEA-Tu antiserum was similar to that of CEA-Tu. Labelled CEA-No could be used as radioactive tracer in RIA as well as labelled CEA-Tu. The physico-chemical properties of purified CEA-Tu as demonstrated by Sepharose 6 B filtration, SDS Polyacrylamide gel analysis and cesium chloride density gradient, were found to be almost identical to those of reference CEA-Tu. Preliminary results showed that CEA-No and CEA-Tu contained the same types of carbohydrates in similar proportions. A rabbit antiserum against CEA-No was obtained which demonstrated the same specificity as conventional anti-CEA-Tu antisera.
Resumo:
A total of 189 Candida albicans isolates have been typed by multilocus enzyme electrophoresis. The results obtained confirm the clonal mode of reproduction of C. albicans. The C. albicans populations found in the oropharynx of human immunodeficiency virus (HIV)-infected patients, in the oropharynx of healthy carriers, or in association with invasive candidiasis could not be distinguished. No clone or group of clones could be associated with the appearance of clinical disorders or with a reduced in vitro susceptibility to the antifungal agent fluconazole. Multiple and sequential oral isolates from 24 HIV-infected patients were also typed by restriction enzyme analysis with the enzymes EcoRI and HinfI and by use of the Ca3 repetitive probe. The results obtained by the combination of all three typing methods show that all but one patient each carried a unique major C. albicans clone in their oropharynx. The 21 patients with sequential isolates had the same C. albicans clones in their throats during recurrent oropharyngeal candidiasis episodes, independently of clinical status or of changes of in vitro susceptibility to fluconazole. Finally, several isolates of the same C. albicans clone found simultaneously in the oropharynx of a patient may present different levels of susceptibility to fluconazole.
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
We report the case of a 76-year-old man with generalized nocardiosis. The microbiologic pattern, the different clinical manifestations and the treatment of nocardiosis are discussed in general. In the particular case of our patient the disease manifested itself primarily as a subcutaneous abscess, a metastasis secondary to pulmonary nocardiosis. The disease was caused by a Nocardia brasiliensis, which is rarely seen in Europe and which does not usually cause a generalized form of nocardiosis.
Resumo:
Mouse mammary tumor virus (MMTV) has been shown to preferentially infect B lymphocytes in vivo. We have used recombinant envelope-coated fluospheres and highly purified MMTV particles to study the distribution of the viral receptors on fresh mouse lymphocytes. A preferential dose-dependent binding to B lymphocytes was observed which could be competed with neutralizing antibodies. In contrast, T-lymphocyte binding remained at background levels. These results strongly suggest a higher density of viral receptor molecules on B lymphocytes than on T lymphocytes and correlate with the preferential initial infection of B lymphocytes observed in vivo.
Resumo:
The hybridoma cell line ZAC3 expresses Vibrio cholerae lipopolysaccharide (LPS)-specific mouse IgA molecules as a heterogeneous population of monomeric (IgAm), dimeric (IgAd), and polymeric (IgAp) forms. We describe a gentle method combining ultrafiltration, ion-exchange chromatography, and size exclusion chromatography for the simultaneous and qualitative separation of the three molecular forms. Milligram quantities of purified IgA molecules were recovered allowing for direct comparison of the biological properties of the three forms. LPS binding specificity was tested after purification; IgAd and IgAp were found to bind strongly to LPS whereas IgAm did not. Secretory IgA (sIgA) could be reconstituted in vitro by combining recombinant secretory component (rSC) and purified IgAd or IgAp, but not IgAm. Surface plasmon resonance-based binding experiments using LPS monolayers indicated that purified reconstituted sIgA and IgA molecules recognize LPS with identical affinity (KA 1.0 x 10(8)M-1). Thus, this very sensitive assay provides the first evidence that the function of SC in sIgA complex is not to modify the affinity for the antigen. KA falls to 6.6 x 10(5) M-1 when measured by calorimetry using detergent-solubilized LPS and IgA, suggesting that the LPS environment is critical for recognition by the antibody.
Resumo:
Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more than 27,000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure. Database URL: http://openflu.vital-it.ch.
Resumo:
Endogenous and infectious mouse mammary tumor viruses (MMTVs) encode in their 3' long terminal repeat a protein that exerts superantigen activity; that is, it is able to interact with T cells via the variable domain of the T cell receptor (TCR) beta chain. We show here that transmission of an infectious MMTV is prevented when superantigen-reactive cells are absent through either clonal deletion due to the expression of an endogenous MTV with identical superantigen specificity or exclusion due to expression of a transgenic TCR beta chain that does not interact with the viral superantigen. A strict requirement for superantigen-reactive T cells is also seen for a local immune response following MMTV infection. This immune response locally amplifies the number of MMTV-infected B cells, most likely owing to their clonal expansion. Collectively, our data indicate that a superantigen-induced immune response is critical for the MMTV life cycle.
Resumo:
Two filamentous fungi with different phenotypes were isolated from crushed healthy spores or perforated dead spores of the arbuscular mycorrhizal fungus (AMF) Scutellospora castanea. Based on comparative sequence analysis of 5.8S ribosomal DNA and internal transcribed spacer fragments, one isolate, obtained from perforated dead spores only, was assigned to the genus Nectria, and the second, obtained from both healthy and dead spores, was assigned to Leptosphaeria, a genus that also contains pathogens of plants in the Brassicaceae. PCR and randomly amplified polymorphic DNA-PCR analyses, however, did not indicate similarities between pathogens and the isolate. The presence of the two isolates in both healthy spores and perforated dead spores of S. castanea was finally confirmed by transmission electron microscopy by using distinctive characteristics of the isolates and S. castanea. The role of this fungus in S. castanea spores remains unclear, but the results serve as a strong warning that sequences obtained from apparently healthy AMF spores cannot be presumed to be of glomalean origin and that this could present problems for studies on AMF genes.
Resumo:
The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.