977 resultados para CFRP aging composite thermal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g-1 after 40 cycles at a current density of 25 mA g-1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for strain release, but also provide excellent electrically conducting channels, while the nanosized Ge particles contribute to improving the discharge capacity of the paper anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The β-phase aging response of Cu–Al–Ni single crystal shape memory alloys (SMAs) within the temperature range of 473–573 K has been investigated. Alloys in austenitic (Cu–14.1Al–4Ni wt.%, alloy A) and martensitic (Cu–13.4Al–4Ni wt.%, alloy M) conditions at room temperature were considered. Aged samples show presence of β1′ and γ1′ martensites in both the alloys and formation of γ2 precipitates in the alloy A. The differential scanning calorimetry (DSC) thermograms of the aged samples show increase in transformation temperatures as well as transformation hysteresis with aging. Dynamic mechanical analysis (DMA) was conducted on both the alloys to ascertain the role of precipitates and martensitic transition on tan δ, which characterizes the damping behaviour of the material. With aging, a steady decrease in tan δ value was observed in both the alloys, which was attributed to the decrease in the number of interfaces per unit area with increasing aging temperature. Moreover, in alloy A, as the volume fraction of precipitate increases with aging, the movement of martensitic interfaces is restricted causing a decreased tan δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaZr0.8Y0.2O3- (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr 0.1Y0.2O3--NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt BZY and 50 wt NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 cm2 at 600C). The 50 wt BZY and 50 wt NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a combination of classical model and first-principles density functional theory calculations to study lattice dynamics of Y2W3O12 and identify phonons responsible for its negative thermal expansion (NTE). Born dynamical charges of various atoms are found to deviate anomalously from their nominal values. We find that the phonons with energy from 4 to 10 meV are the primary contributors to its NTE. These phonons involve rotations of the YO6 octahedra and WO4 tetrahedra in mutually opposite sense and collective translational atomic displacements, reflecting a strong mixing between acoustic and optic modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of domain integral used extensively for J integral has been applied in this work for the formulation of J(2) integral for linear elastic bimaterial body containing a crack at the interface and subjected to thermal loading. It is shown that, in the presence of thermal stresses, the J(k) domain integral over a closed path, which does not enclose singularities, is a function of temperature and body force. A method is proposed to compute the stress intensity factors for bimaterial interface crack subjected to thermal loading by combining this domain integral with the J(k) integral. The proposed method is validated by solving standard problems with known solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ bulk ultrafine bimodal eutectic Al-Cu-Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (alpha-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (alpha-Al + Al2Cu + Si), exhibits high fracture strength (1.1 +/- 0.1 GPa) and large compressive plastic strain (11 +/- 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildlife conservation involves an understanding of a specific animal, its environment and the interaction within a local ecosystem. Unmanned Aerial Vehicles (UAVs) present cost effective, non-intrusive solution for detecting animals over large areas and the use thermal imaging cameras offer the ability detect animals that would otherwise be concealed to visible light cameras. This report examines some of limitations on using SURF for the development of large maps using multiple stills images extracted from the thermal imaging video camera which contain wildlife (eg. Koala in them).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.