970 resultados para CATALYZED COUPLING REACTIONS
Resumo:
A diffuse interface phase field model is proposed for the unified analysis of diffusive and displacive phase transitions under nonisothermal conditions. Two order parameters are used for the description of the phenomena: one is related to the solute mass fraction and the other to the strain. The model governing equations come from the balance of linear momentum, the solute mass balance (which will lead to the Cahn-Hilliard equation) and the balance of internal energy. Thermodynamic restrictions allow to define constitutive relations for the thermodynamic forces and for the mechanical and chemical dissipations. Numerical tests carried out at different values of the initial temperature show that the model is able to describe the main features of both the displacive and the diffusive phase transitions, as well as their effect on the temperature. © 2010, Advanced Engineering Solutions.
Resumo:
A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.
Resumo:
We perform Raman scattering experiments on natural graphite in magnetic fields up to 45 T, observing a series of peaks due to interband electronic excitations over a much broader magnetic field range than previously reported. We also explore electron-phonon coupling in graphite via magnetophonon resonances. The Raman G peak shifts and splits as a function of magnetic field, due to the magnetically tuned coupling of the E 2g optical phonons with the K- and H-point inter-Landau-level excitations. The analysis of the observed anticrossing behavior allows us to determine the electron-phonon coupling for both K- and H-point carriers. In the highest field range (>35 T) the G peak narrows due to suppression of electron-phonon interaction. © 2012 American Physical Society.
Resumo:
Evaluating free energy profiles of chemical reactions in complex environments such as solvents and enzymes requires extensive sampling, which is usually performed by potential of mean force (PMF) techniques. The reliability of the sampling depends not only on the applied PMF method but also the reaction coordinate space within the dynamics is biased. In contrast to simple geometrical collective variables that depend only on the positions of the atomic coordinates of the reactants, the E(gap) reaction coordinate (the energy difference obtained by evaluating a suitable force field using reactant and product state topologies) has the unique property that it is able to take environmental effects into account leading to better convergence, a more faithful description of the transition state ensemble and therefore more accurate free energy profiles. However, E(gap) requires predefined topologies and is therefore inapplicable for multistate reactions, in which the barrier between the chemically equivalent topologies is comparable to the reaction activation barrier, because undesired "side reactions" occur. In this article, we introduce a new energy-based collective variable by generalizing the E(gap) reaction coordinate such that it becomes invariant to equivalent topologies and show that it yields more well behaved free energy profiles than simpler geometrical reaction coordinates.
Resumo:
The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.
Resumo:
Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes can be numerically unstable. Here we develop the Stochastic Implicit Euler method - a stable and efficient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Growth of Au-catalyzed InP nanowires (NWs) by metalorganic chemical vapor deposition (MOCVD) has been studied in the temperature range of 400-510 °C and V/III ratio of 44-700. We demonstrate that minimal tapering of InP NWs can be achieved at 400 °C and V/III ratio of 350. Zinc-blende (ZB) or wurtzite (WZ) NWs is obtained depending on the growth conditions. 4K microphotoluminescence (μ-PL) studies show that emission energy is blue-shifted as growth temperature increases. By changing these growth parameters, one can tune the emission wavelength of InP NWs which is attractive for applications in developing novel optoelectronic devices. © 2010 IEEE.
Resumo:
The notion of coupling within a design, particularly within the context of Multidisciplinary Design Optimization (MDO), is much used but ill-defined. There are many different ways of measuring design coupling, but these measures vary in both their conceptions of what design coupling is and how such coupling may be calculated. Within the differential geometry framework which we have previously developed for MDO systems, we put forth our own design coupling metric for consideration. Our metric is not commensurate with similar types of coupling metrics, but we show that it both provides a helpful geo- metric interpretation of coupling (and uncoupledness in particular) and exhibits greater generality and potential for analysis than those similar metrics. Furthermore, we discuss how the metric might be profitably extended to time-varying problems and show how the metric's measure of coupling can be applied to multi-objective optimization problems (in unconstrained optimization and in MDO). © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.