984 resultados para CARDIAC AUTONOMIC DENERVATION
Resumo:
Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.
Resumo:
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.
Resumo:
The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.
Resumo:
Cardiac contusion is a potentially fatal complication of blunt chest trauma. The effects of a combination of quercetin and methylprednisolone against trauma-induced cardiac contusion were studied. Thirty-five female Sprague-Dawley rats were divided into five groups (n=7) as follows: sham, cardiac contusion with no therapy, treated with methylprednisolone (30 mg/kg on the first day, and 3 mg/kg on the following days), treated with quercetin (50 mg·kg−1·day−1), and treated with a combination of methylprednisolone and quercetin. Serum troponin I (Tn-I) and tumor necrosis factor-alpha (TNF-α) levels and cardiac histopathological findings were evaluated. Tn-I and TNF-α levels were elevated after contusion (P=0.001 and P=0.001). Seven days later, Tn-I and TNF-α levels decreased in the rats treated with methylprednisolone, quercetin, and the combination of methylprednisolone and quercetin compared to the rats without therapy, but a statistical significance was found only with the combination therapy (P=0.001 and P=0.011, respectively). Histopathological degeneration and necrosis scores were statistically lower in the methylprednisolone and quercetin combination group compared to the group treated only with methylprednisolone (P=0.017 and P=0.007, respectively). However, only degeneration scores were lower in the combination therapy group compared to the group treated only with quercetin (P=0.017). Inducible nitric oxide synthase positivity scores were decreased in all treatment groups compared to the untreated groups (P=0.097, P=0.026, and P=0.004, respectively). We conclude that a combination of quercetin and methylprednisolone can be used for the specific treatment of cardiac contusion.
Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats
Resumo:
The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.
Resumo:
Cardiac remodeling involves changes in heart shape, size, structure, and function after injury to the myocardium. The proinflammatory adaptor protein myeloid differentiation protein 88 (MyD88) contributes to cardiac remodeling. To investigate whether excessive MyD88 levels initiate spontaneous cardiac remodeling at the whole-organism level, we generated a transgenic MyD88 mouse model with a cardiac-specific promoter. MyD88 mice (male, 20-30 g, n=∼80) were born at the expected Mendelian ratio and demonstrated similar morphology of the heart and cardiomyocytes with that of wild-type controls. Although heart weight was unaffected, cardiac contractility of MyD88 hearts was mildly reduced, as shown by echocardiographic examination, compared with wild-type controls. Moreover, the cardiac dysfunction phenotype was associated with elevation of ANF and BNP expression. Collectively, our data provide novel evidence of the critical role of balanced MyD88 signaling in maintaining physiological function in the adult heart.
Resumo:
Retrograde autologous priming (RAP) has been routinely applied in cardiac pediatric cardiopulmonary bypass (CPB). However, this technique is performed in pediatric patients weighing more than 20 kg, and research about its application in pediatric patients weighing less than 20 kg is still scarce. This study explored the clinical application of RAP in CPB in pediatric patients undergoing cardiac surgery. Sixty pediatric patients scheduled for cardiac surgery were randomly divided into control and experimental groups. The experimental group was treated with CPB using RAP, while the control group was treated with conventional CPB (priming with suspended red blood cells, plasma and albumin). The hematocrit (Hct) and lactate (Lac) levels at different perioperative time-points, mechanical ventilation time, hospitalization duration, and intraoperative and postoperative blood usage were recorded. Results showed that Hct levels at 15 min after CPB beginning (T2) and at CPB end (T3), and number of intraoperative blood transfusions were significantly lower in the experimental group (P<0.05). There were no significant differences in CPB time, aortic blocking time, T2-Lac value or T3-Lac between the two groups (P>0.05). Postoperatively, there were no significant differences in Hct (2 h after surgery), mechanical ventilation time, intensive care unit time, or postoperative blood transfusion between two groups (P>0.05). RAP can effectively reduce the hemodilution when using less or not using any banked blood, while meeting the intraoperative perfusion conditions, and decreasing the perioperative blood transfusion volume in pediatric patients.
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.
Resumo:
The ability of the cardiovascular system to quickly and efficiently adapt to an orthostatic stress is vital for the human body to function on earth. The way in which the various aspects of the cardiovascular system work together to counteract an orthostatic stress has been previously quantified in the adult population. However, there are still many unknowns surrounding the topic of how the cardiovascular system functions to cope with this same stress in children. The purpose of this study was to describe the cardiovascular hemodynamic adaptations to various levels of orthostatic stress induced using a lower body negative pressure (LBNP) chamber in pre-pubertal boys. A secondary purpose was to determine indices of baroreceptor sensitivity (BRS) at both rest and during low levels of LBNP in this same pediatric sample. Finally, this study aimed to compare the relative responses to LBNP between the children and adults. To complete the study 20 healthy pre-pubertal boys and adult males (9.3 ± 1.1 and 23 ± 1.8 years of age respectively) were recruited and randomly exposed to three levels of LBNP (15, 20 and 25 mmHg). At rest and during the application of the LBNP heart rate (HR), manual and bcat-by-beat systolic (SBP), diastolic (DBP) and mean arterial blood pressure (MAP) were monitored continuously. Aortic diameter was measured at rest and peak aortic blood velocity (PV) was recorded continuously for at least I minute during each baseline and LBNP condition. From the raw data HR, stroke volume (SV), cardiac output (Q), total peripheral resistance (TPR), low frequency baroreceptor sensitivity (LF BRS), high frequency baroreceptor sensitivity (HF BRS) and LFIIIF ratio were calculated. At rest, llR wa'i higher and SBP, SV, Q and LF/HF ratio were lower in the children compared to the adult males (pgJ.05). In response to the increasing LEN!> IIR and TPR increased, and LF BRS. SV and Q decreased in the adult group (pSf).05). while the same levels of LBNP caused an increase in TPR and a decrease in SBP, SV and Q in the children (pSf).05). Although not significant, the LF/HF ratio in the adult group showed an increasing trend in response to increased negative pressure (p=O.088). As for resting BRS, there were no significant differences in LF or HF BRS between the children and the adults despite a tendency for both measures to be 18% lower in the children. Also the LF/HF ratio was almost significantly greater in the adults compared to the children (p=O.057). In addition, a comparison between the relative adult and child responses to LBNP yielded no significant group by level interactions. This result should be taken with caution though, as the low sample size and high measurement variability generated very low statistical power for this analysis. In conclusion, the results of this study suggest that the hemodynamic adaptations to an orthostatic stress were less pronounced in the prepubertal males, most likely due to an underdeveloped autonomic system. These results need to be strengthened by further research before any implications can be derived for health care purposes.
Resumo:
Vagal baroreflex sensitivity (BRS) is a measure of short term blood pressure (BP) regulation through alterations in heart rate. Low BRS reflects impaired autonomic system regulation and has been found to be a surrogate marker for cardiovascular health. In particular, it has found to be associated with the pathogenesis of adult hypertension. However, only limited information exists as to the negative consequences of childhood BP on baroreflex function. The objective of this study was to investigate BRS in children with 2 different BP profiles while controlling for the effects of age, maturation, sex, and body composition. A preliminary subsample of 11-14 year-old children from the HBEAT (Heart Behavioural Environmental Assessment Team) Study was selected. The children were divided into 2 BP groups; high BP (HBP; 2:95tl1 percentile, n=21) and normal BP (NBP; <90th percentile, n=85). Following an initial 15 minutes of supine rest, 5 minutes of continuous beat-to-beat BP (Finapres) and RR interval (RRI) were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency (HF) and low frequency (LF) power spectral areas were set to 0.15-0.4 Hz and 0.04-0.15 Hz, respectively. Body composition was measured using body mass index. After adjusting for body composition, maturation, age and sex ANCOV A results were as follows; LF and HF BRS, LF and HF RRI, and RRI total power were lower in the HBP versus NBP participants (p<0.05). As well, LF IHF SBP ratio was significantly higher in the HBP compared to the NBP group (p<0.05). The regression coefficients (unstandardized B) indicated that in changing groups (NBP to HBP) LF and HF BRS decreases by 4.04 and 6.18 ms/mmHg, respectively. Thus, as BP increases, BRS decreases. These data suggest that changes in autonomic activity occur in children who have HBP, regardless of age, sex, maturation, and body composition. Thus, despite their young age and relatively short amount of time having high BP compared with adults, these children are already demonstrating poor BP regulation and reduced cardiovagal activity. Given that childhood BP is associated with hypertension in adulthood, there is a growing concern in regards to the current cardiovascular health of our children and future adults.
Resumo:
Background: CVD is the second leading cause of death in Canada. Mastery and self-esteem are psychosocial factors, suggested to be emerging risk factors for CVD. Purpose: The purpose of the study was two-fold; first to establish whether mastery and self-esteem predicted adherence to maintenance CR; and second, whether mastery and self-esteem improved after a 6-month maintenance CR program. Methods: Data were collected at the Brock University Heart Institute. The study involved a sample of 98 participants. At intake to the program and 6-month follow-up, participants completed a questionnaire battery which included the Rosenberg Self-Esteem Scale and the Pearlin-Schooler Mastery Scale. Results: Mastery and self-esteem scores did not alter the likelihood of adherence to the CR program. Mastery and self-esteem did significantly improve after 6-months of CR amongst participants with the lowest exercise capacity. Conclusion: Maintenance CR does improve mastery and self-esteem amongst those with diminished exercise capacity.
Resumo:
This thesis investigated the impact of pubertal maturation and sex on cardiovagal baroreflex sensitivity (BRS) and arterial properties of the common carotid artery (CCA), and the relationship between CCA arterial properties and BRS. This thesis also investigated the effect of orthostatic stress on arterial properties of the CCA and carotid sinus (CS), as well as their impact on BRS in response to orthostatic stress. Children and adolescents between the ages of 8-18 years were examined. To assess pubertal maturation participants were organized into five pubertal groups based on the criteria of Tanner. BRS was assessed by transfer function analysis in the low frequency range (0.05 – 0.15Hz). Pulse pressure (PP) was measured at the CCA (PPCCA) and CS (PPCS) using applanation tonometry, and at the finger (PPFinger) using photoplethysmography. Ultrasound sonography and applanation tonometry were used to determine the distensibility coefficient (DC) at the CCA (DCCCA) and CS (DCCS). A moderate posture stimulus was implemented by passively moving participants into a 50° seated-recumbent (SR) position. The results demonstrated a sex-by-maturation interaction on BRS (p= 0.019). BRS decreased from early- to post-puberty in males (p<0.01), and remained unchanged in females. Females demonstrated greater BRS compared to males post-puberty (p<0.05). CCA distensibility was not affected by sex or maturation and was not related to BRS. PPCS was greater than PPCCA (p<0.001), while PPFinger was greater than both PPCCA (p<0.001) and PPCS (p<0.001). In response to SR, the relative change in PPFinger was significantly different than the relative change in PPCCA (p<0.001) and PPCS (p<0.001), while the relative change between PPCCA and PPCS were not different. Finally, in response to SR there was a significant decrease in DCCS (p=0.001), but not DCCCA. The relative change in BRS in response to SR was significantly correlated to the relative change in DCCS (p=0.004), but not DCCCA. The findings demonstrated an important sex-dependent maturation effect on BRS in children and adolescents that was not explained by CCA distensibility. Also, the CS and CCA responded differently to orthostatic stress. The CS was more suitable to evaluate the effect of arterial distensibility on BRS in response to posture change.
Resumo:
Nos études ont démontrées que la formation de la cicatrice et la guérison sont associées avec l’apparition de cellules de type myocytes cardiaques nestine(+) dans la région péri-infarcie. Présentement, l’étude examine le mécanisme, tel que l’hypoxie ou les hormones neuronales, possiblement impliqué dans leur recrutement et de dévoiler leur origine cellulaire. La présence de ces cellules a été détectée dans les coeurs infarcies d’une semaine et maintenue après neuf mois suite à une sujétion coronaire complète. Aussi, ces cellules de type myocytes cardiaques nestine(+) ont été observées dans le coeur infarci humain. L’hypoxie représente un événement prédominant suite à un infarctus de myocarde, mais l’exposition des rats normaux à un environnement hypoxique n’a pas pu promouvoir l’apparition de ces cellules. Autrement, l’infusion de l’agoniste -adrénergique non-sélectif isoprotérénol (ISO) dans les rats adultes Sprague-Dawley a augmenté la protéine nestine dans le ventricule gauche et a été associé avec la réapparition de cellules de type myocytes cardiaques nestine(+). Cela représente possiblement un effet secondaire suite à la nécrose des myocytes cardiaques par l’administration d’isoprotérénol. Dernièrement, on a identifié une sous-population de cellules nestine(+) dans le coeur normal du rat qui co-exprime les marqueurs de cellules cardiaques progénitrices Nkx-2.5 et GATA-4. Cette sous-population de cellules nestine/Nkx-2.5/GATA-4 pourrait représenter des substrats cellulaires qui puissent se différentier en cellules de type myocytes cardiaques nestine(+) suite à une ischémie. Mots clés: nestine, isoprotérénol, nécrose, cellule souche, cellule progénitrice, myocyte cardiaque