1000 resultados para C. wuellerstorfi d18O


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected d18O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer d13C and foraminifer/coral 14C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral palaeoclimatic studies are under way at many sites throughout the wet tropics. However, arid environments have received less attention. Here we report a high-resolution, 63 yr record of coral d18O and d13C extracted from a Porites colony from the Dahlak Archipelago, off the Eritrean coast, in the southern Red Sea. The annual cycles of the coral d18O and d13C are inversely related while their inter-annual variations show a strong positive correlation, with similar inter-decadal trends. Inter-annual variations in coral d18O show a relatively weak correlation with the southern Red Sea SST, but are strongly correlated with the Indian Ocean SST, especially on the decadal time-scale. The range of the inter-annual variations in the coral d18O is high compared to changes in local SST, due to the amplifying effect of simultaneous changes in water isotopic composition. Due to this amplification of the climate signal the coral provides a better indication of regional oceangraphic behaviour than the local SST record. The norrtheast monsoon signal in the coral d18O dominates the mean annual signal and shows the best correlation with the instrumental data sets. It appears that variations in the coral d18O are controlled mainly by variations in the intensity of surface water influx from the Indian Ocean to the Red Sea during the winter northeast monsoon. Of particular significance is that the decadal time-scale variations in the coral skeletal d18O are closely correlated with both the Indian Ocean SST and with variations in the Pacific-based Southern Oscillation index. That is, isotopically light coral skeleton, indicating strong NE monsoon Red Sea inflow, correlates with periods of high Indian Ocean SST and with predominantly negative (El Nino) phases of the Southern Oscillation. The simultaneous nature of inter-decadal changes in Asian monsoon and ENSO behaviour suggest pan-Indo-Pacific tropical climate reorganisation and evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternations between siliciclastic, carbonate and evaporitic sedimentary systems, as recorded in the Aptian mixed succession of southern Tunisia, reflect profound palaeoceanographic and palaeoclimatic changes in this area of the southern Tethyan margin. The evolution from Urgonian-type carbonates (Berrani Formation, lower Aptian) at the base of the series, to intervals dominated by gypsum or detrital deposits in the remainder of the Aptian is thought to result from the interplay between climate change and tectonic activity that affected North Africa. Based on the evolution of clay mineral assemblages, the early Aptian is interpreted as having been dominated by slightly humid conditions, since smectitic minerals are observed. Near the early to late Aptian boundary, the onset of a gypsiferous sedimentation is associated with the appearance of palygorskite and sepiolite, which supports the installation of arid conditions in this area of the southern Tethyan margin. The evaporitic sedimentation may have also been promoted by the peculiar tectonic setting of the Bir Oum Ali area during the Aptian, where local subsidence may have been tectonically enhanced linked to the opening of northern and central Atlantic. Stress associated with the west and central African rift systems may have triggered the development of NW-SE, hemi-graben structures. Uplifted areas may have constituted potential new sources for clastic material that has been subsequently deposited during the late Aptian. Chemostratigraphic (d13C) correlation of the Bir Oum Ali succession with other peri-Tethyan regions complements biostratigraphic findings, and indicates that a potential expression of the Oceanic Anoxic Event (OAE) 1a may be preserved in this area of Tunisia. Although the characteristic negative spike at the base of this event is not recognized in the present study, a subsequent, large positive excursion with d13C values is of similar amplitude and absolute values to that reported from other peri-Tethyan regions, thus supporting the identification of isotopic segments C4-C7 of the OAE1a. The absence of the negative spike may be linked to either non preservation or non deposition: the OAE1a occurred in a global transgressive context, and since the Bir Oum Ali region was located in the innermost part of the southern Tethyan margin during most of the Aptian, stratigraphic hiatuses may have been longer than in other regions of the Tethys. This emphasizes the importance of integrating several stratigraphic disciplines (bio-, chemo- and sequence stratigraphy) when performing long-distance correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broad range of motorcycle safety programs and systems exist in Australia and New Zealand. These vary from statewide licensing and training systems run by government licensing and transport agencies to safety programs run in small communities and by individual rider groups. While the effectiveness of licensing and training has been reviewed and recommendations for improvement have been developed (e.g. Haworth & Mulvihill, 2005), little is known about many smaller or innovative programs, and their potential to improve motorcycle safety in the ACT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.