949 resultados para Bis(2-ethylhexyl)amine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid and sensitive screening qualitative method using a surface plasmon resonance (SPR) biosensor was developed which can detect of all fenicol antibiotic residues in shrimps from a single sample extract. This method requires ethyl acetate extraction followed by a single wash with isooctane/chlorofonrm. Each sample extract is injected over the surfaces of two biosensor chip flow cells, one surface having the capability to detect florefenicol amine (FF amine), florefenicol (FF), and thiamphenicol (TAP) and the second surface for chloramphenicol (CAP) detection. The estimated detection capabilities (CC beta) were 0. 1, 0.2, 250, and 0.5 ppb for CAP, FF, FF amine, and TAP, respectively. This quick, simple test allowed the detection of CAP residues in shrimps at the minimum required performance limit (MRPL) of 0.1 mu g kg(-1) for this compound and of FF, FF amine, and TAP below their maximum residue limits (MRLs). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.