967 resultados para Biological nutrient removal
Resumo:
The digestibility and utilisation of two soybean bran-based diets and two fishmeal-based diets serving as control, at optimal (30%) and suboptimal (20%) protein levels were evaluated in Oreochromis niloticus. These were Diet I (Control)-fishmeal based diet at 30% crude protein, Diet II (Control) - fishmeal based diet at 20% crude protein, Diet III - hydrolysed Soybean Bran based diet at 30% crude protein, Diet IV - hydrolysed Soybean Bran based diet at 20%. Dry matter digestibility differed insignificantly with variation in diets (P<0.05). There was significant variation in the protein (p 20.05), lipid and ash digestibility. Protein was more digestible at optimum level than sub-optimum level, while lipid and ash digestibility did not vary with their inclusion levels. Variation in the utilisation of the diets was significant (P<0.05) except for survival. It was observed that the best diet was Diet 1, closely followed by Diet II with highest values of mean final weight, specific growth rate, protein efficiency ratio and the apparent net protein utilisation. The high digestibility values of Diets III and IV suggests their inclusion in fish diet to spare protein for growth
Resumo:
This paper is a review of studies on effects of nutrients on biological productivity and efforts made so far at restoration of nutrients in lakes. It is to provide an understanding of the basis scientific process accruing in lakes, therefore of prime importance in maintaining water quality standards for propagation of effective lake management
Resumo:
Limnological studies in Lake Victoria (Kenyan portion) have been sporadic. Water quality and nutrient dynamics studies are being undertaken in fifteen sampling sites that have been divided into four ecological zones namely: Nyanza Gulf, Rusinga Channel, open waters inshore and open waters. The ongoing study will show how the physical and chemical paramenters affect fish distribution and abundance.
Resumo:
ENGLISH: During 1961 the government of Ecuador, with the financial assistance of the Special Fund of the United Nations and the technical assistance of FAO experts, initiated an extensive program of fisheries research centered in a fisheries institute established in Guayaquil. In cooperation with this program, and in connection with Ecuador's adherence in 1961 to the Convention for the Establishment of an Inter-American Tropical Tuna Commission, a two-and-a-half year investigation of the ecology of the Gulf of Guayaquil and adjacent waters was started by the Inter-American Tropical Tuna Commission. SPANISH: Durante 1961 el gobierno ecuatoriano con el apoyo financiero del Fondo Especial de las Naciones Unidas y la ayuda técnica de los expertos de la FAO, inició un programa extensivo de investigación pesquera, centralizado en el instituto pesquero establecido en Guayaquil. En cooperación con este programa y en conexión a la afiliaci6n del Ecuador a la Convención, en 1961, para el establecimiento de una Comisión Interamericana del Atún Tropical, Cue iniciada por la Comisión una investigación de dos aftos y medio sobre la ecología del Golfo de Guayaquil y de las aguas adyacentes. (PDF contains 501 pages.)
Resumo:
Fish cage culture is a rapid aquacultural practice of producing fish with more yield compared to traditional pond culture. Several species cultured by this method include Cyprinus carpio, Orechromis niloticus, Sarotherodon galilaeus, Tilapia zilli, Clarias lazera, C. gariepinus, Heterobranchus bidorsalis, Citharinus citharus, Distochodus rostratus and Alestes dentes. However, the culture of fish in cages has some problems that are due to mechanical defects of the cage or diseases due to infection. The mechanical problems which may lead to clogged net, toxicity and easy access by predators depend on defects associated with various types of nets which include fold sieve cloth net, wire net, polypropylene net, nylon, galvanized and welded net. The diseases problems are of two types namely introduced diseases due to parasites. The introduced parasites include Crustaseans, Ergasilus sp. Argulus africana, and Lamprolegna sp, Helminth, Diplostomulum tregnna: Protozoan, Trichodina sp, Myxosoma sp, Myxobolus sp. the second disease problems are inherent diseases aggravated by the very rich nutrient environment in cages for rapid bacterial, saprophytic fungi, and phytoplanktonic bloom resulting in clogging of net, stagnation of water and low biological oxygen demand (BOD). The consequence is fish kill, prevalence of gill rot and dropsy conditions. Recommendations on routine cage hygiene, diagnosis and control procedures to reduce fish mortality are highlighted
Resumo:
The study of limnology is important to understand ecosystem dynamics and the ecological basis for fish production in the Lake Victoria which is important for fisheries resources use, planning and management. Physical, chemical and biological parameters are important and known to influence fish population production. Energy fixed by primary producers, e.g. algae, is transfered to higher trophic levels, e.g fish. Factors which influence the dynamics of phytoplankton and zooplankton population, e.g nutrient availability and uptake, growth rate, species composition and biomass, ultimately affect fish production. The commercial fisheries of Lake Victoria consists mainly of piscivorous Lates niloticus (L>), algivorous Oreochromis niloticus (L.) and zooplanktivorous Rastrineobola argentea (Pellegrin)
Resumo:
Part I of the thesis describes the olfactory searching and scanning behaviors of rats in a wind tunnel, and a detailed movement analysis of terrestrial arthropod olfactory scanning behavior. Olfactory scanning behaviors in rats may be a behavioral correlate to hippocampal place cell activity.
Part II focuses on the organization of olfactory perception, what it suggests about a natural order for chemicals in the environment, and what this in tum suggests about the organization of the olfactory system. A model of odor quality space (analogous to the "color wheel") is presented. This model defines relationships between odor qualities perceived by human subjects based on a quantitative similarity measure. Compounds containing Carbon, Nitrogen, or Sulfur elicit odors that are contiguous in this odor representation, which thus allows one to predict the broad class of odor qualities a compound is likely to elicit. Based on these findings, a natural organization for olfactory stimuli is hypothesized: the order provided by the metabolic process. This hypothesis is tested by comparing compounds that are structurally similar, perceptually similar, and metabolically similar in a psychophysical cross-adaptation paradigm. Metabolically similar compounds consistently evoked shifts in odor quality and intensity under cross-adaptation, while compounds that were structurally similar or perceptually similar did not. This suggests that the olfactory system may process metabolically similar compounds using the same neural pathways, and that metabolic similarity may be the fundamental metric about which olfactory processing is organized. In other words, the olfactory system may be organized around a biological basis.
The idea of a biological basis for olfactory perception represents a shift in how olfaction is understood. The biological view has predictive power while the current chemical view does not, and the biological view provides explanations for some of the most basic questions in olfaction, that are unanswered in the chemical view. Existing data do not disprove a biological view, and are consistent with basic hypotheses that arise from this viewpoint.
Resumo:
DNA is nature’s blueprint, holding within it the genetic code that defines the structure and function of an organism. A complex network of DNA-binding proteins called transcription factors can largely control the flow of information from DNA, so modulating the function of transcription factors is a promising approach for treating many diseases. Pyrrole-imidazole (Py-Im) polyamides are a class of DNA-binding oligomers, which can be synthetically programmed to bind a target sequence of DNA. Due to their unique shape complementarity and a series of favorable hydrogen bonding interactions that occur upon DNA-binding, Py-Im polyamides can bind to the minor groove of DNA with affinities comparable to transcription factors. Previous studies have demonstrated that these cell-permeable small molecules can enter cell nuclei and disrupt the transcription factor-DNA interface, thereby repressing transcription. As the use of Py-Im polyamides has significant potential as a type of modular therapeutic platform, the need for polyamides with extremely favorable biological properties and high potency will be essential. Described herein, a variety of studies have been performed aimed at improving the biological activity of Py-Im polyamides. To improve the biological potency and cellular uptake of these compounds, we have developed a next-generation class of polyamides bearing aryl-turn moieties, a simple structural modification that allows significant improvements in cellular uptake. This strategy was also applied to a panel of high-affinity cyclic Py-Im polyamides, again demonstrating the remarkable effect minor structural changes can have on biological activity. The solubility properties of Py-Im polyamides and use of formulating reagents with their treatment have also been examined. Finally, we describe the study of Py-Im polyamides as a potential artificial transcription factor.
Resumo:
Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.
Resumo:
Heparin has been used as an anticoagulant drug for more than 70 years. The global distribution of contaminated heparin in 2007, which resulted in adverse clinical effects and over 100 deaths, emphasizes the necessity for safer alternatives to animal-sourced heparin. The structural complexity and heterogeneity of animal-sourced heparin not only impedes safe access to these biologically active molecules, but also hinders investigations on the significance of structural constituents at a molecular level. Efficient methods for preparing new synthetic heparins with targeted biological activity are necessary not only to ensure clinical safety, but to optimize derivative design to minimize potential side effects. Low molecular weight heparins have become a reliable alternative to heparin, due to their predictable dosages, long half-lives, and reduced side effects. However, heparin oligosaccharide synthesis is a challenging endeavor due to the necessity for complex protecting group manipulation and stereoselective glycosidic linkage chemistry, which often result in lengthy synthetic routes and low yields. Recently, chemoenzymatic syntheses have produced targeted ultralow molecular weight heparins with high-efficiency, but continue to be restricted by the substrate specificities of enzymes.
To address the need for access to homogeneous, complex glycosaminoglycan structures, we have synthesized novel heparan sulfate glycopolymers with well-defined carbohydrate structures and tunable chain length through ring-opening metathesis polymerization chemistry. These polymers recapitulate the key features of anticoagulant heparan sulfate by displaying the sulfation pattern responsible for heparin’s anticoagulant activity. The use of polymerization chemistry greatly simplifies the synthesis of complex glycosaminoglycan structures, providing a facile method to generate homogeneous macromolecules with tunable biological and chemical properties. Through the use of in vitro chromogenic substrate assays and ex vivo clotting assays, we found that the HS glycopolymers exhibited anticoagulant activity in a sulfation pattern and length-dependent manner. Compared to heparin standards, our short polymers did not display any activity. However, our longer polymers were able to incorporate in vitro and ex vivo characteristics of both low-molecular-weight heparin derivatives and heparin, displaying hybrid anticoagulant properties. These studies emphasize the significance of sulfation pattern specificity in specific carbohydrate-protein interactions, and demonstrate the effectiveness of multivalent molecules in recapitulating the activity of natural polysaccharides.
Resumo:
Clarias (Clarias gariepinus) (Burshell, 1821) fingerlings were fed isonitrogenous diets (38.9% crude protein) with fermented fluted pumpkin leaves (FFPL) replacing different proportion (0,50,75,100%) of extruded soybean meal (ESM) for 8 weeks. Growth responses at the different substitution levels measured. Increasing FFPL intake resulted in better weight gains and higher specific growth rates (SGR) of 0.29, 0.36 and 0.38% per day respectively. The increase in growth from feeding diets containing 75% and 100% of the ESM replaced with FFPL were significantly higher (P<0.05) than those of other diets. Further more fish tissue protein deposition consistently increased with increasing level of FFPL concentration in their diets. Fish fed diets where whole ESM was replace 100% FFPL gave the best overall response in terms of their weight gain, food conversion ratio, protein efficiency ratio, and specific growth rate. Economic considerations indicate the replacement of ESM with FFPL, which is a cheaper ingredient in feeds for Clarias
Resumo:
The daytime composition and relative abundance of zooplankton species were studied in three treatments of two replicate earthen ponds each with nutrient sources and water replenishment regimes. Treatment -A (200m super(2) surface area supplied 900kgha super(-1) pig manure only). Treatment -B (200m super(2) surface area supplied 70kgha super(-1) month super(-1) pig manure, 50kgha super(-1) month super(-1) N.P.K. [15:15:15] and 30kgha super(-1) month super(-1) Urea) and Treatment-C (1500m2 surface area supplied 1150kgha super(-1) month super(-1) commercial grade 40% crude protein compounded feed). Water replenishment for Treatment A was daily tidal deluge from the New Calabar River while that for treatment B and C was from column-well and occasional rains. No zooplankton species were recovered from the pig-manure only treatment (A) while only Diffugia constricta and Difflugia urceolata were the two protozoans that occurred together in treatments B (combined fertilization) and C (compounded feed only) in contrast, Difflugia acuminate and three rotifers, Collurella uncinata, Diurella stylata and Keratella quadrata occurred only treatment B. similarly, Arcella arenaria, Arcella costata, Centropyxis aculeate, Difflugia pyriformis, Branchionus calyciflorus, Lepadella patella, Polyarthra trigla and Onchocanmptus mohammedi were recovered from treatment C. Arcella costata was the most abundant zooplankton in the entire experiment, while Arcella arenaria was very abundant in treatment C, Collurella uncinata was very abundant in treatment B. The inference is that combined fertilization of earthen freshwater ponds tend to be more suitable for the culture of rotifers such as Brachionus calyciflorus, popular in fish larva nursery, while those supplied compounded feed could be used to produce protozoans where desirable
Resumo:
Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.
Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.
Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.
Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.
Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.