991 resultados para Biological Engineering
Resumo:
Estudi elaborat a partir d’una estada al Center Biomedical Engineering (CBE) del Massachussets Institute of Technology (MIT), durant els mesos de juliol i agost del 2005. S’investiga una metodologia amb l’objectiu d’obtenir biomaterials que puguin actuar de bastida en la interfície os/cartílag, afavorint la diferenciació i creixement cel·lular de cartílag ossificat que pugui actuar d’unió entre l’articulació i l’os. S’experimenta una metodologia per a establir quins són els péptids afavoridors de la formació de teixit ossi utilitzats en materials d’hidroxiapatita. Es conclou que la tecnologia desenvolupada permet disposar d’una plataforma per assajar l’estudi del signaling sobre cèl·lules embrionàries, que permeti desenvolupar materials amb més capacitat diferenciadora.
Resumo:
Report for the scientific sojourn carried out at Albert Einstein Institut in Germany, from April to July 2006.
Resumo:
Biological invasions have been object of ecological research for years. As one objective, natural scientists investigate the effects of invasive species on ecosystems and their functioning (Levine et al. 2003). However, impacts on ecosystems are also of relevance for society. Changes in ecosystems affect humans in so far as ecosystems provide goods and services, such as fresh water, food and fibbers or recreation, which might be altered due to invasive species. Therefore impacts of biological invasions should be an object of socio-economic interest, which is also demanded by the Convention on Biological Diversity
Resumo:
A comparative study of the BH strain of Schistosoma mansoni from Belo Horizonte, Minas Gerais state, infective to Biomphalaria glabrata from the same locality, and the SJ strain from São José dos Campos, São Paulo state, infective to B. tenagophila from the latter locality, showed the following differences: 1. Length of adult worms and size of eggs significantly larger in the BH strain. 2. Higher infection rates in the B. glabrata-BH strain association than in the B. tenagophila-SJ strain association, following exposure of each snail to 1 or 10 miracidia. 3.Longer prepatent period (from penetration of miracidium to first shedding of cercariae) in the B. tenagophila-SJ strain association. 4. Infection of both Biomphalaria species when exposed to hybrid miracidia from crosses between the two strains, at lower levels than those resulting from exposure of each snail species to miracidia of the pure sympatric strain. (Both Biomphalaria populations are practically refractory to infection with the allopatric strain). These results are interpreted as pointing to a better host-parasite adjustment in the B. glabrata-BH strain association than in the B. tenagophila-SJ association. The interfertility between the two strains, which produced viable hybrids infective to both Biomphalaria species, supports the conclusion that the observed differences are merely intraspecific, and that the two strains may be considered distinct biological races of Schistosoma mansoni.
Resumo:
Biological materials are increasingly used in abdominal surgery for ventral, pelvic and perineal reconstructions, especially in contaminated fields. Future applications are multi-fold and include prevention and one-step closure of infected areas. This includes prevention of abdominal, parastomal and pelvic hernia, but could also include prevention of separation of multiple anastomoses, suture- or staple-lines. Further indications could be a containment of infected and/or inflammatory areas and protection of vital implants such as vascular grafts. Reinforcement patches of high-risk anastomoses or unresectable perforation sites are possibilities at least. Current applications are based mostly on case series and better data is urgently needed. Clinical benefits need to be assessed in prospective studies to provide reliable proof of efficacy with a sufficient follow-up. Only superior results compared with standard treatment will justify the higher costs of these materials. To date, the use of biological materials is not standard and applications should be limited to case-by-case decision.
Resumo:
The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
To study changes in survival, in biological activities and behavior of planorbids submitted to increased hydrostatic pressure, we developed a technique using two transparent chambers and a hydraulic piston. The apparatus permitted renewal of the liquid medium without substantial variations in pressure, thus eliminating excretion products and maintaining the desired O2 level and thereby permitting us to evaluate the effects of pressure independently of the occurrence of anoxia. Pressure was maintained without any contact of the liquid medium with compressed air, a situation which reproduced with relative fidelity what occurs in nature and assured the presence of the same amounts of gases in the two observation chambers (Control and Experimental). Biomphalaria glabrata was found to be able to survive at least 48 hours when submitted to 49.02 x 10**4 Pa (equivalent to a water depth of 48.8 m), continuing to day egg masses and showing few behavioral changes when compared with the control group.
Resumo:
The biological characterization of the Trypanosoma cruzi clone Dm 28c in terms of its growth in LIT medium, cell-cycle, infectivity to mice and interaction with professional and non-professional phagocytic cells shows that it behaves as a bona fide T. cruzi representant. The biological properties of this myotropic clone do not change according to the origin of the trypomastigote forms (i. e., from triatomines, infected mice, cell-culture or from the chemically defined TAUP and TAU3AAG media). In addition Dm 28c metacyclic trypomastigotes from TAU3AAG medium display a high infectivity level to fibroblasts and muscle cells. Experiments on binding of cationized ferritin to trypomastigotes surface show the existence of cap-like structures of ferritin in regions near the kinetoplast. However the nature and role of these anionic sites remain to be determined. The results indicate that metacyclic trypomastigotes from Dm 28c clone obtained under chemically defined conditions reproduce the biological behaviour of T. cruzi, rendering this system very suitable for the study of cell-parasite interactions and for the isolation of trypanosome relevant macromolecules.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.