960 resultados para Biogeochemistry of trace metal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hydrosedimentology studies the determination of the trace element concentrations at the study site is imperative, since this background can be used to assess the enrichment of sediments with these elements. This enrichment can be the result of the natural process of geological formation or of anthropogenic activities. In the latter case, guidelines are used to indicate the concentrations at which trace elements cause ecotoxicity effects on the environment. Thus, this study used legal reserve areas in the municipality of Toledo, PR, where natural forests are maintained, with no or minimal human interference to establish background levels. The results of atomic emission spectrometry with inductively coupled argon plasma showed that the legal reserves have lower levels of trace elements than other theoretical references, but equivalent concentrations to the safety levels recommended by international guidelines. It was concluded that determining values is fundamental to recommend this background as scientific database for research in the area of hydrosedimentology of this site and also as a way of environmental management of the watershed of this municipality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents the results of research on the influence of trace compounds from rock salt deicers on portland cement mortar and concrete. An evaluation of the deicers in stock throughout the state showed that about ninety-five percent contained enough sulfate to cause accelerated deterioration of concrete. Of the impurities found in rock salts, sulfate compounds of calcium and magnesium were found to be equally deleterious. Magnesium chloride was found to be innocuous. Introduction of fly ash eliminated the damage to portland cement mortar caused by sulfates. When used with frost resistant Alden aggregate in fly ash concrete and exposed to a variety of deicer brine compositions, the concrete did not deteriorate after exposure. With the exception of a high calcium brine, the behavior of the frost-prone Garrison aggregate was independent of deicer treatment; the high calcium brine reduced frost damage with this aggregate. Two approaches to reducing sulfate deterioration from deicers are suggested as (1) limiting the amount of sulfate to about 0.28 percent, and (2) making concrete sulfate-resistant by using fly ash. Techniques for making existing concrete deicer-sulfate-resistant are essential to a practical solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The market place of the twenty-first century will demand that manufacturing assumes a crucial role in a new competitive field. Two potential resources in the area of manufacturing are advanced manufacturing technology (AMT) and empowered employees. Surveys in Finland have shown the need to invest in the new AMT in the Finnish sheet metal industry in the 1990's. In this run the focus has been on hard technology and less attention is paid to the utilization of human resources. In manymanufacturing companies an appreciable portion of the profit within reach is wasted due to poor quality of planning and workmanship. The production flow production error distribution of the sheet metal part based constructions is inspectedin this thesis. The objective of the thesis is to analyze the origins of production errors in the production flow of sheet metal based constructions. Also the employee empowerment is investigated in theory and the meaning of the employee empowerment in reducing the overall production error amount is discussed in this thesis. This study is most relevant to the sheet metal part fabricating industrywhich produces sheet metal part based constructions for electronics and telecommunication industry. This study concentrates on the manufacturing function of a company and is based on a field study carried out in five Finnish case factories. In each studied case factory the most delicate work phases for production errors were detected. It can be assumed that most of the production errors are caused in manually operated work phases and in mass production work phases. However, no common theme in collected production error data for production error distribution in the production flow can be found. Most important finding was still that most of the production errors in each case factory studied belong to the 'human activity based errors-category'. This result indicates that most of the problemsin the production flow are related to employees or work organization. Development activities must therefore be focused to the development of employee skills orto the development of work organization. Employee empowerment gives the right tools and methods to achieve this.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is to give information to machine designers about how to design and size sheet metal structures and joints. Generally, the designing object is to lighten structures. To design structures that are light and can carry loads more effectively, designers have to be updated of new manufacturing techniques and new designing methods and criterions. With knowledge of this thesis, a designer can recognize objects and methods plus how and where it is possible to apply these new more effectively load carrying structures. The thesis gives answers to questions of corrosion and material planning, goes into joint types and manufacturing techniques of sheet metal structures. One of the main issues is to develop designers world of ideas to design right kind of products with new lasertechniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of organo nanoclay 5-(4-dimethylamino-benzylidene) rhodanine-immobilized as a new, easily prepared, and stable solid sorbent for preconcentration trace amounts of Au(III) ions in aqueous solution is presented. The sorption of Au(III) ions was quantitative in the pH range of 2-4, and quantitative desorption occurred instantaneously with 10.0 mL of a mixture containing 0.5 mol L-1 Na2S2O3 and KSCN. Various parameters, such as the effect of pH, breakthrough volume, extraction time, and interference of a large number of anions and cations have been studied. The proposed method has been applied for determination of trace amount of gold in water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sensitive and selective procedure for speciation of trace dissolved Fe(III) and Fe(II), using modified octadecyl silica membrane disks and determination by flame atomic absorption spectrometry was developed. A ML3 complex is formed between the ligand and Fe(III) responsible for extraction of metal ion on the disk. Various factors influencing the separation of iron were investigated and the optimized operation conditions were established. Under optimum conditions, an enrichment factor of 166 was obtained for Fe3+ ions. The calibration graph using the preconcentration system for Fe3+ was linear between 40.0 and 1000.0 μg L-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.