991 resultados para Bio-defence genes
Resumo:
Decomposing wheat (Triticum aestivum) straw and rhizosphere-infested soil were evaluated for their suppressive activity against horse purslane (Trianthema portulacastrum), a noxious summer weed in Pakistan. Two separate pot studies were carried out. Wheat straw was incorporated at 4, 6 and 8 g kg-1 soil five days before the sowing of horse purslane. Pots without straw incorporation were maintained as control. In a second study, soil was taken from 15 and 30 cm depths from a previously cropped wheat field immediately after its harvest and was used as growing medium. Soil from an intentionally uncropped area of the same field was used as control. Suppressive activity was measured in terms of germination dynamics, seedling growth, and biochemical attributes such as chlorophyll contents, total soluble phenolics, soluble protein and antioxidant enzymes. Germination, seedling growth, chlorophyll contents and soluble protein of horse purslane were all negatively influenced. Higher phenolics and enhanced activities of antioxidant enzymes were noticed in response to wheat residues incorporation and its rhizosphere soil. Both studies established that the phytotoxic influence of wheat straw and wheat-infested rhizosphere soil on horse purslane can further be exploited for horse purslane management as a sustainable approach.
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
It has been commonly thought that standards of beauty are arbitrary cultural conventions that vary between cultures and time. In my thesis I found that it is not so. Instead, I show that attractiveness and preferred traits serve as cues to phenotypic qualities that provide selective benefits for those who choose their mates based on these criteria. In the first study I show that attractive men have a stronger antibody response to the hepatitis b vaccine and higher levels of testosterone than their less attractive peers. Men with low levels of testosterone also tend to have high levels of the stress hormone cortisol, suggesting that their immune responses may have been inhibited by stress hormones. Thus, facial attractiveness may serve as an honest cue of the strength of immune defence in men. In the second study, I show that the attractiveness of the male body is also a cue of better immunity. In addition, I show that adiposity, both in men’s faces and bodies, is a better cue of the strength of immunity and attractiveness than of masculinity. In the third study, I test the preferences of women from 13 countries for facial cues of testosterone and cortisol. I show that there is cross-cultural variation in women’s preference for cues of testosterone and cortisol in male faces. I found a relationship between the health of a nation and women’s preferences for cues of testosterone in the male face and the interaction between preferences for cues of testosterone and cortisol. I show also a relationship between preferences for cues of testosterone and a societal-level measure of parasite stress. Thus, it seems that societal-level ecological factors influence the relative value of traits as revealed by combinations of testosterone and stress hormones. In the fourth study, I show that women’s immune responsiveness (amount of antibodies produced) does not predict facial attractiveness. Instead, plasma cortisol level is negatively associated with attractiveness, indicating that stressed women look less attractive. Fat percentage is curvilinearly associated with facial attractiveness, indicating that being too thin or too fat reduces attractiveness. This study suggests that in contrast to men, facial attractiveness in women does not indicate the strength of immune defence, but is associated with other aspects of long-term health and fertility: circulating levels of the stress hormone cortisol and the percentage of body fat. In the last study I show that the attractiveness of men’s body odor is positively correlated with stress hormone levels, suggesting also that the attractiveness of body odors may signal the phenotypic quality of males to females. However, the attractiveness of men’s body odor was not associated with testosterone levels. My thesis suggests that the standard of beauty is not in the eye of the beholder. Instead, our standard of beauty is hardwired in our brains by genes that are selected by natural selection and also influenced by current environmental conditions.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
Three egg-type stocks segregating dwarf (dw) and bantam (dwB) genes in female progeny were produced from the same 18 heterozygous (dwB/dw) sires used to inseminate dams of three different genotypes: normal (dw+), dwarf (dw) and bantam (dwB) dams. The heritability of 8-week body weight estimated from full-sibs of the same phenotype of progeny was 0.40, and that estimated from paternal half-sibs of the same phenotype (dwarf or bantam), and from the same genotype of dam was 0.38. Therefore, maternal and non-additive effects within genotypic classes of dam made little contribution to the genetic variance for 8-week body weight among their progeny. The interaction of sires (S) with genotypes (dw+, dw and dwB) of dam (G) was significant at the 5% level. This indicates that the rankings of the sires within each one of the three genotypes of dam were not the same, probably due to non-additive genetic variation among genotypes of dams. The evidence indicated that in general the genes from individual sires combined differently with each type of dam (G). Those genes which combined well with the genes from normal (dw+) dams combined poorly with both the genes from the dwarf (dw) and the genes from the bantam (dwB) dams. The interaction of sires (S) with phenotypes (dwarf and bantam) of progeny (P) was significant at the 10% level. The results indicated a probable gene x genotype interaction for 8-week weight between genes at the dwarf locus (dw and dwB) and the background genotype (single and/or polygenes). The correlation among paternal half-sibs was influenced more by the S x G than by the S x P interaction, but the effects tended to be cumulative
Resumo:
The present study describes the production of stocks segregating dwarf (dw), bantam (dwB) and normal (dw+) alleles, as well as the characters, shank length, adult body weight, age at sexual maturity and egg production. Heterozygous K dw+/k dwB sires were mated to normal (dw+) dams to produce stock D6.a, and mated to dwB females to produce stock D6.b. Stock D4.a came from mating F1 heterozygous dwB dw sires to dwarf Leghorns. In a third series of matings, 7/8 Sebright and 1/8 dw-Leghorn dwB dw sires were crossed to three groups of dams of different genotypes. The progeny of the normal (dw+), dwarf (dw), and bantam (dwB) dams were designated as stocks D4.b, D4.c and D4.d, respectively. The dw+ dams were White Leghorn strain cross females. The difference between the rate of laying of normal (69.7%) and their bantam sisters (68.6%) was not statistically significant when the average 32-week body weight of the dw+ sisters was 1,897 g. However, when the 32-week body weight of the normal daughters from the same sires and smaller dams was around 1,646 g, the difference between the rate of laying of the normal (78.1%) and their bantam sisters (75.9%) was significant (P < 0.05). The dwB gene may have a similar but smaller effect on the rate of egg laying than its dwarf allele. The difference between sexual maturity of normal and bantam daughters of either the largest or the smallest dams was not statistically significant, even though the smallest dwB pullets were in average 2.9 days older at first egg. The use of shank length combined with adult body weight allowed a precise discrimination between bantams and dwarfs
Resumo:
The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to QTLs that control aluminum (Al) tolerance in maize. The strategy used was bulked segregant analysis (BSA) and the genetic material utilized was an F2 population derived from a cross between the Al-susceptible inbred line L53 and Al-tolerant inbred line L1327. Both lines were developed at the National Maize and Sorghum Research Center - CNPMS/EMBRAPA. The F2 population of 1554 individuals was evaluated in a nutrient solution containing a toxic concentration of Al and relative seminal root length (RSRL) was used as a phenotypic measure of tolerance. The RSRL frequency distribution was continuous, but skewed towards Al-susceptible individuals. Seedlings of the F2 population which scored the highest and the lowest RSRL values were transplanted to the field and subsequently selfed to obtain F3 families. Thirty F3 families (15 Al-susceptible and 15 Al-tolerant) were evaluated in nutrient solution, using an incomplete block design, to identify those with the smallest variances for aluminum tolerance and susceptibility. Six Al-susceptible and five Al-tolerant F3 families were chosen to construct one pool of Al-susceptible individuals, and another of Al-tolerant, herein referred as "bulks", based on average values of RSRL and genetic variance. One hundred and thirteen probes were selected, with an average interval of 30 cM, covering the 10 maize chromosomes. These were tested for their ability to discriminate the parental lines. Fifty-four of these probes were polymorphic, with 46 showing codominance. These probes were hybridized with DNA from the two contrasting bulks. Three RFLPs on chromosome 8 distinguished the bulks on the basis of band intensity. DNA of individuals from the bulks was hybridized with these probes and showed the presence of heterozygous individuals in each bulk. These results suggest that in maize there is a region related to aluminum tolerance on chromosome 8
Resumo:
It is well known that virtually every tissue of the amphibian larvae is highly sensitive to the mutually antagonistic actions of thyroid hormone (TH) and prolactin (PRL), but it is not known if adult amphibian tissues respond similarly to these two hormones. We have previously shown that very low doses of triiodothyronine (T3) rapidly and strongly potentiate the activation of silent vitellogenin (Vit) genes by estrogen (E2) and the autoinduction of estrogen receptor (ER) transcripts in primary cultures of adult Xenopus hepatocytes. This response to T3 is accompanied by the upregulation of thyroid hormone receptor b (TRb) mRNA. Using Northern blot and RNase protection assays, we now show that ovine PRL added for 12 h along with 2 x 10-9 M T3 will completely prevent potentiation of E2 induction of Vit mRNA in primary cultures of adult Xenopus hepatocytes. PRL also abolished the auto-upregulation of TRb mRNA and the cross-activation of autoinduction of ER mRNA. Thus, we show for the first time that the anti-TH action of PRL that is manifested in Xenopus tadpole tissues during metamorphosis is retained in adult liver, and suggest that the mutually antagonistic actions of the two hormones may be brought about by similar molecular mechanisms in larval and adult amphibian tissues
Resumo:
The human immunoglobulin lambda variable locus (IGLV) is mapped at chromosome 22 band q11.1-q11.2. The 30 functional germline v-lambda genes sequenced untill now have been subgrouped into 10 families (Vl1 to Vl10). The number of Vl genes has been estimated at approximately 70. This locus is formed by three gene clusters (VA, VB and VC) that encompass the variable coding genes (V) responsible for the synthesis of lambda-type Ig light chains, and the Jl-Cl cluster with the joining segments and the constant genes. Recently the entire variable lambda gene locus was mapped by contig methodology and its one- megabase DNA totally sequenced. All the known functional V-lambda genes and pseudogenes were located. We screened a human genomic DNA cosmid library and isolated a clone with an insert of 37 kb (cosmid 8.3) encompassing four functional genes (IGLV7S1, IGLV1S1, IGLV1S2 and IGLV5a), a pseudogene (VlA) and a vestigial sequence (vg1) to study in detail the positions of the restriction sites surrounding the Vl genes. We generated a high resolution restriction map, locating 31 restriction sites in 37 kb of the VB cluster, a region rich in functional Vl genes. This mapping information opens the perspective for further RFLP studies and sequencing
Resumo:
The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs). Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac) from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV). The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.
Resumo:
The inflammatory response elicited by various stimuli such as microbial products or cytokines is determined by differences in the pattern of cellular gene expression. We have used the differential display RT-PCR (DDRT-PCR) strategy to identify mRNAs that are differentially expressed in various murine cell types stimulated with pro-inflammatory cytokines, microbial products or anti-inflammatory drugs. Mouse embryonic fibroblasts (MEFs) were treated with IFNs, TNF, or sodium salicylate. Also, peritoneal macrophages from C3H/Hej mice were stimulated with T. cruzi-derived GPI-mucin and/or IFN-g. After DDRT-PCR, various cDNA fragments that were differentially represented on the sequencing gel were recovered, cloned and sequenced. Here, we describe a summary of several experiments and show that, when 16 of a total of 28 recovered fragments were tested for differential expression, 5 (31%) were found to represent mRNAs whose steady-state levels are indeed modulated by the original stimuli. Some of the identified cDNAs encode for known proteins that were not previously associated with the inflammatory process triggered by the original stimuli. Other cDNA fragments (8 of 21 sequences, or 38%) showed no significant homology with known sequences and represent new mouse genes whose characterization might contribute to our understanding of inflammation. In conclusion, DDRT-PCR has proven to be a potent technology that will allow us to identify genes that are differentially expressed when cells are subjected to changes in culture conditions or isolated from different organs.
Resumo:
A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed.
Resumo:
Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Several methods have been used for this purpose, including differential hybridization, cDNA subtraction, differential display and, more recently, DNA chips. Subtractive hybridization has significantly improved after the polymerase chain reaction was incorporated into the original method and many new protocols have been established. Recently, the availability of the well-known coding sequences for some organisms has greatly facilitated gene expression analysis using high-density microarrays. Here, we describe some of these modifications and discuss the benefits and drawbacks of the various methods corresponding to the main advances in this field.
Resumo:
The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.