998 resultados para Beryllium 10
Resumo:
Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (similar to 50 %) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO(2)). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 +/- 104 000 km(2), which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+81% about the mean value and is strongly correlated with the El Nino/Southern Oscillation (ENSO) climate oscillation index (r = 0.75, p < 0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO(2) and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155 %. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO(2) should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28 %.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/H s and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs > 12 m and Hmax > 16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs > 5.5 m or Hmax > 8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean 5 carbonate pump (�50%) and their formation can affect the atmosphere-to-ocean (airsea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007), using Earth observation data from the Sea-viewing Wide 10 Field of view Sensor (SeaWiFS).We calculate the annual mean surface areal coverage of E. huxleyi in the North Atlantic to be 474 000±119 000km2 yr−1, which results in a net CaCO3 production of 0.62±0.15 Tg CaCO3 carbon per year. However, this surface coverage and net production can fluctuate by −54/+81% about these mean values and are strongly correlated with the El Ni˜no/Southern Oscillation (ENSO) climate os15 cillation index (r =0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and thus decrease the localised sink of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly CO2 sink can reach 12 %. The maximum reduction of the monthly CO2 sink in the time series is 32 %. This work suggests that the high 20 variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered within modelling studies of the North Atlantic if we are to fully understand the variability of its air-to-sea CO2 flux.
Resumo:
La asociación Staticetum caespitosae fue descrita por González-Albo (Bol. Real Soc. Esp. Hist. Nat. 38: 12-15. 1941) como "un prado o formación herbácea que cubre las rasas y planas (...) entre 1850-2000 m, zona subalpina, suelo pedregoso arenoso, de naturaleza silícea; cobertura media del 30 por 100 (...) orientación e inclinación múltiple y sin ser muy pronunciada (...)".
Resumo:
The objective the study was to determine the levels of glucose and triglycerides in seminal plasma of 10 guinea pigs, which were fed for a period of 2 months with a diet containing 10% more ED. The level of glucose found in seminal plasma was 11.59 ± 0.5 mg/dL and triglyceride value was 55.95 ± 3.2 mg/dL, while the motility was 97% on average. We conclude that in guinea pigs the levels both glucose and triglycerides were increased by major level of ED in feed, but the spermatic motility was not.
Resumo:
Biomechanical problems in children, is an important subject currently, existing controversy in different areas, for example, the majority of children have a flattened footprint, or the hypermobility joint is linked to a musculoskeletal pain. The objective of the study was to determine what kind of footprint is most frequent in school-age children (8-10 years) in the area of Plasencia. This was taken as a sign 50 children, of whom 28 were males and 22 females. All the subjects in the study underwent an assessment of footprint planted in static as well as an exploration of different parameters through inspection in a standing position (formula digital, rearfoot). The results show that excavated footprint is present in a 72% cases of the population, 16% was belonging to an excavated footprint in which we find a higher percentage of weight related.For the digital formula we find that the most common is the Egyptian foot by 40% of the cases and that the prevalence in the rearfoot, is a normal hindfoot. In relation with the hypermobility joint, we check that it is more common in girls and that none of them presents an association to musculoskeletal pain. As a future line we could establish a more comprehensive study with new techniques and valuingchild’s statics and dynamics, to have a more accurate study of the different variables in the sample population studied.
Resumo:
HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.