999 resultados para Beach Dynamics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes criteria for predicting the tendency of looping in tropical cyclone tracks using the approach of vortex dynamics. We model the asymmetric structure of a cyclone by a system of vortex patches. The evolution of such system of vortices is simulated by the method of contour dynamics. A new set of exact analytic formulas for contour dynamics calculations is derived, which is shown to be more computationally effective. Based on point-vortex models, we derive analytic formulas for the criteria of looping in a cyclone track. From numerical experiments, the simulated trajectories obtained from the point-vortex system and vortex patch system agree quite well. Hence, the looping criteria obtained from the point-vortex system can be applied by forecasters to stay alert for tendency of looping in a cyclone track. To demonstrate the applicability of the proposed criteria, the trajectory of Typhoon Yancy (9012), whose field data are available from ''TCM-90'', is simulated. The case study shows that the asymmetric structure similar to the pattern of a beta gyre is responsible for its recurvature when Yancy landed Fujian Province, China on 20 August 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations are carried out in order to study the atomic structure of crystalline component, of nanocrystalline alpha-Fe when it is consolidated from small grains. A two-dimensional computational block is used to simulate the consolidation process. All the preset dislocations in the original grains glide out of them in the consolidation process, but new dislocations can generate when the grain size is large enough. It shows that dislocations exist in the consolidated material rather than in the original grains. Whether dislocations exist in the crystalline component of the resultant model nana-material depends upon grain size. The critical value of grain size for dislocation generation appears to be about 9 nm. This result agrees with experiments qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a dislocation array emitted from a crack tip under mode II loading with asymmetric tilt grain boundaries (GBs) is analysed by the molecular dynamics method. The GBs can generally be described by planar and linear matching zones and unmatching zones. All GBs are observed to emit dislocations. The GBs migrated easily due to their planar and linear matching structure and asymmetrical type. The diffusion induced by stress concentration is found to promote the GB migration. The transmissions of dislocations are either along the matched plane or along another plane depending on tilt angle theta. Alternate processes of stress concentration and stress relaxation take place ahead of the pileup. The stress concentration can be released either by transmission of dislocations, by atom diffusion along GBs, or by migration of GBs by formation of twinning bands. The simulated results also unequivocally demonstrate two processes, i.e. asymmetrical GBs evolving into symmetrical ones and unmatching zones evolving into matching ones during the loading process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gliding behavior of edge dislocation near a grain boundary(QB) in copper under pure shear stresses is simulated by using molecular dynamics(MD) method. Many-body potential incorporating the embedded atom method (EAM) is used. The critical shear stresses for a single disocation to pass across GB surface are obtained at values of sigma(c)=23MPa similar to 68 MPa and 137 MPa similar to 274 MPa for Sigma=165 small angle tilt GB at 300 K and 20 K, respectively. The first result agrees with the experimental yield stress sigma(y)(=42 MPa) quite well. It suggests that there might be one of the reasons of initial plastic yielding caused by single dislocation gliding across GB. In addition, there might be possibility to obtain yield strength from microscopic analysis. Moreover, the experimental value of sigma(y) at low temperature is generally higher than that at room temperature. So, these results are in conformity qualitatively with experimental fact. On the other hand, the Sigma=25 GB is too strong an obstacle to the dislocation. In this case, a dislocation is able to pass across GB under relatively low stress only when it is driven by other dislocations. This is taken to mean that dislocation pile-up must be built up in front of this kind of GB, if this GB may take effect on the process of plastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations using Morse interaction potential are performed in studies of [110] symmetrical tilt grain boundary (GB) structures with mis-orientation angles 50.5 degrees(Sigma 11), 129.5 degrees(Sigma 11), 70.5 degrees(Sigma 3) and 109.5 degrees(Sigma 3) at various tempratures. The GB structures are found to start local disordering at about 0.5T(m)(T-m is the melting point of aluminium) for 50.5 degrees(Sigma 11), 0.32T(m) for 129.5 degrees(Sigma 11) and 0.38T(m) for 70.5 degrees(Sigma 3), respectively. These results agree with conclusions deduced from the anelastic measurements. But, for twin-boundary structure 109.5 degrees(Sigma 3), this disordering has not been found even when temperature increases up to 0.9T(m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down.