969 resultados para Bayesian Learning


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These guidelines were created by a Task Force appointed by the State Library of Iowa and the Iowa Department of Education to provide assistance to local school districts in developing school library programs. These include a summary of the data collected annually by the State Library of Iowa in its Survey of School Libraries. This data will allow local schools to compare themselves in terms of collections, budgets and staffing to schools of similar size throughout the state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helping behaviors can be innate, learned by copying others (cultural transmission) or individually learned de novo. These three possibilities are often entangled in debates on the evolution of helping in humans. Here we discuss their similarities and differences, and argue that evolutionary biologists underestimate the role of individual learning in the expression of helping behaviors in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Education (DE) was appropriated $1.45 million for the development and implementation of a statewide work-based learning intermediary network. This funding was awarded on a competitive basis to 15 regional intermediary networks. Funds received by the regional intermediary networks from the state through this grant are to be used to develop and expand work-based learning opportunities within each region. A match of resources equal to 25 percent was a requirement of the funding. This match could include private donations, in-kind contributions, or public moneys. Funds may be used to support personnel responsible for the implementation of the intermediary network program components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication is part of a larger teaching innovation project financed by the University ofBarcelona, whose objective is to develop and evaluate transversal competences of the UB, learningability and responsibility. The competence is divided into several sub-competencies being the ability toanalyze and synthesis the most intensely worked in the first year. The work presented here part fromthe results obtained in phase 1 and 2 previously implemented in other subjects (Mathematics andHistory) in the first year of the degree of Business Administration Degree. In these subjects’ previousexperiences there were deficiencies in the acquisition of learning skills by the students. The work inthe subject of Mathematics facilitated that students become aware of the deficit. The work on thesubject of History insisted on developing readings schemes and with the practical exercises wassought to go deeply in the development of this competence.The third phase presented here is developed in the framework of the second year degree, in the WorldEconomy subject. The objective of this phase is the development and evaluation of the same crosscompetence of the previous phases, from a practice that includes both, quantitative analysis andcritical reflection. Specifically the practice focuses on the study of the dynamic relationship betweeneconomic growth and the dynamics in the distribution of wealth. The activity design as well as theselection of materials to make it, has been directed to address gaps in the ability to analyze andsynthesize detected in the subjects of the first year in the previous phases of the project.The realization of the practical case is considered adequate methodology to improve the acquisition ofcompetence of the students, then it is also proposed how to evaluate the acquisition of suchcompetence. The practice is evaluated based on a rubric developed in the framework of the projectobjectives. Thus at the end of phase 3 we can analyze the process that have followed the students,detect where they have had major difficulties and identify those aspects of teaching that can help toimprove the acquisition of skills by the students. The interest of this phase resides in the possibility tovalue whether tracing of learning through competences, organized in a collaborative way, is a goodtool to develop the acquisition of these skills and facilitate their evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virulent infections are expected to impair learning ability, either as a direct consequence of stressed physiological state or as an adaptive response that minimizes diversion of energy from immune defense. This prediction has been well supported for mammals and bees. Here, we report an opposite result in Drosophila melanogaster. Using an odor-mechanical shock conditioning paradigm, we found that intestinal infection with bacterial pathogens Pseudomonas entomophila or Erwinia c. carotovora improved flies' learning performance after a 1h retention interval. Infection with P. entomophila (but not E. c. carotovora) also improved learning performance after 5 min retention. No effect on learning performance was detected for intestinal infections with an avirulent GacA mutant of P. entomophila or for virulent systemic (hemocoel) infection with E. c. carotovora. Assays of unconditioned responses to odorants and shock do not support a major role for changes in general responsiveness to stimuli in explaining the changes in learning performance, although differences in their specific salience for learning cannot be excluded. Our results demonstrate that the effects of pathogens on learning performance in insects are less predictable than suggested by previous studies, and support the notion that immune stress can sometimes boost cognitive abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Ce travail de thèse étudie des moyens de formalisation permettant d'assister l'expert forensique dans la gestion des facteurs influençant l'évaluation des indices scientifiques, tout en respectant des procédures d'inférence établies et acceptables. Selon une vue préconisée par une partie majoritaire de la littérature forensique et juridique - adoptée ici sans réserve comme point de départ - la conceptualisation d'une procédure évaluative est dite 'cohérente' lors qu'elle repose sur une implémentation systématique de la théorie des probabilités. Souvent, par contre, la mise en oeuvre du raisonnement probabiliste ne découle pas de manière automatique et peut se heurter à des problèmes de complexité, dus, par exemple, à des connaissances limitées du domaine en question ou encore au nombre important de facteurs pouvant entrer en ligne de compte. En vue de gérer ce genre de complications, le présent travail propose d'investiguer une formalisation de la théorie des probabilités au moyen d'un environment graphique, connu sous le nom de Réseaux bayesiens (Bayesian networks). L'hypothèse principale que cette recherche envisage d'examiner considère que les Réseaux bayesiens, en concert avec certains concepts accessoires (tels que des analyses qualitatives et de sensitivité), constituent une ressource clé dont dispose l'expert forensique pour approcher des problèmes d'inférence de manière cohérente, tant sur un plan conceptuel que pratique. De cette hypothèse de travail, des problèmes individuels ont été extraits, articulés et abordés dans une série de recherches distinctes, mais interconnectées, et dont les résultats - publiés dans des revues à comité de lecture - sont présentés sous forme d'annexes. D'un point de vue général, ce travail apporte trois catégories de résultats. Un premier groupe de résultats met en évidence, sur la base de nombreux exemples touchant à des domaines forensiques divers, l'adéquation en termes de compatibilité et complémentarité entre des modèles de Réseaux bayesiens et des procédures d'évaluation probabilistes existantes. Sur la base de ces indications, les deux autres catégories de résultats montrent, respectivement, que les Réseaux bayesiens permettent également d'aborder des domaines auparavant largement inexplorés d'un point de vue probabiliste et que la disponibilité de données numériques dites 'dures' n'est pas une condition indispensable pour permettre l'implémentation des approches proposées dans ce travail. Le présent ouvrage discute ces résultats par rapport à la littérature actuelle et conclut en proposant les Réseaux bayesiens comme moyen d'explorer des nouvelles voies de recherche, telles que l'étude de diverses formes de combinaison d'indices ainsi que l'analyse de la prise de décision. Pour ce dernier aspect, l'évaluation des probabilités constitue, dans la façon dont elle est préconisée dans ce travail, une étape préliminaire fondamentale de même qu'un moyen opérationnel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard practice of wave-height hazard analysis often pays little attention to the uncertainty of assessed return periods and occurrence probabilities. This fact favors the opinion that, when large events happen, the hazard assessment should change accordingly. However, uncertainty of the hazard estimates is normally able to hide the effect of those large events. This is illustrated using data from the Mediterranean coast of Spain, where the last years have been extremely disastrous. Thus, it is possible to compare the hazard assessment based on data previous to those years with the analysis including them. With our approach, no significant change is detected when the statistical uncertainty is taken into account. The hazard analysis is carried out with a standard model. Time-occurrence of events is assumed Poisson distributed. The wave-height of each event is modelled as a random variable which upper tail follows a Generalized Pareto Distribution (GPD). Moreover, wave-heights are assumed independent from event to event and also independent of their occurrence in time. A threshold for excesses is assessed empirically. The other three parameters (Poisson rate, shape and scale parameters of GPD) are jointly estimated using Bayes' theorem. Prior distribution accounts for physical features of ocean waves in the Mediterranean sea and experience with these phenomena. Posterior distribution of the parameters allows to obtain posterior distributions of other derived parameters like occurrence probabilities and return periods. Predictives are also available. Computations are carried out using the program BGPE v2.0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces.