1000 resultados para Balear Sea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical adjoint model with TOPEX/POSEIDON (T/P) altimeter data was set up to investigate the shallow water tidal constituents in the Bohai Sea and the Yellow Sea. Shallow water tidal constituents W-4, MS4 and M-6) in the Bohai Sea and the Yellow Sea were first extracted from nearly 10 years of T/P data and then assimilated into a nonlinear barotropic tidal model by using adjoint method in order to fully describe the tides in this area. The general patterns of M-4 and MS4 solutions were in good agreement with those of Kang et al. (Cont. Shelf. Res. IS (1998) 739.) and Lefevre et al., (J. Geophys. Res. 105 (2000) 8707.). The RMS values for the principal constituents and coastal constituents were obviously less than those calculated by Kang et al. (1998) and Lefevre et al. (2000). It was shown that the calculated tidal constituents charts obtained in the present study were more accurate than those in other models. In the future the model will be applied to other coastal areas and some semi-enclosed seas. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes the progress of large-scale air-sea interaction studies that has been achieved in China in the four-year period from July 1998 to July 2002, including seven aspects in the area of the air-sea interaction, namely air-sea interaction related to the tropical Pacific Ocean, monsoon-related air-sea interaction, air-sea interaction in the north Pacific Ocean, air-sea interaction in the Indian Ocean, air-sea interactions in the global oceans, field experiments, and oceanic cruise surveys. However more attention has been paid to the first and the second aspects because a large number of papers in the reference literature for preparing and organizing this paper are concentrated in the tropical Pacific Ocean, such as the ENSO process with its climatic effects and dynamics, and the monsoon-related air-sea interaction. The literature also involves various phenomena with their different time and spatial scales such as intraseasonal, annual, interannual, and interdecadal variabilities in the atmosphere/ocean interaction system, reflecting the contemporary themes in the four-year period at the beginning of an era from the post-TOGA to CLIVAR studies. Apparently, it is a difficult task to summarize the great progress in this area, as it is extracted from a large quantity of literature, although the authors tried very hard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group of statistical algorithms are proposed for the inversion of the three major components of Case-H waters in the coastal area of the Huanghai Sea and the East China Sea. The algorithms are based on the in situ data collected in the spring of 2003 with strict quality assurance according to NASA ocean bio-optic protocols. These algorithms are the first ones with quantitative confidence that can be applied for the area. The average relative error of the inversed and in situ measured components' concentrations are: Chl-a about 37%, total suspended matter (TSM) about 25%, respectively. This preliminary result is quite satisfactory for Case-H waters, although some aspects in the model need further study. The sensitivity of the input error of 5% to remote sensing reflectance (Rrs) is also analyzed and it shows the algorithms are quite stable. The algorithms show a large difference with Tassan's local SeaWiFS algorithms for different waters, except for the Chl-a algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fine-grid model (1/6degrees) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3degrees) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6degrees) covering the East Asian marginal seas and coarse grid (31) covering the rest part of the global oceans. The result shows that the China 1985 National Altitude Datum is 24.7 cm above the me-an sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of model results is sufficient for practical application. Based on the model results, the mean sea surface heights for the study area with a resolution of 1/6 degree are given. This result also links the mean sea levels at islands with those on the mainland coast and gives the mean sea surface heights at tidal stations in the Taiwan Island, the Dongsha Islands, the Yisha Islands and the Nansha Islands relative to the China 1985 National Altitude Datum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal tidal constituents M-2, S-2, K-1 and O-1 in the South China Sea, Gulf of Tonkin and Gulf of Thailand are simulated simultaneously using the numerical scheme of Kwok et al. (1995 Proceedings of the 1st Asian Computational Fluid Dynamics Conference, pp. 16-19). The average differences between the computed and observed harmonic constants are mostly within 5 cm and 10 degrees for amplitudes and phase-lags, respectively. The simulated tidal regimes in the present model are believed to be more accurate than the previous numerical results. Our studies confirm that a clockwise rotating M-2 amphidromic system lies in the southeast of the Gulf of Thailand and an S-2 amphidromic system at the near-shore area of the northeast South China Sea. The linear tidal energy equation developed by Garrett (1975 Deep-Sea Research 22, 23-35) is generalized to the nonlinear case. Based on the numerical results, the energy budgets in the South China Sea and its subareas, namely the Taiwan Strait, the Gulf of Tonkin, the Gulf of Thailand and the remaining area are investigated. The tidal motion in the Taiwan Strait is maintained mainly by the energy fluxes from the East China Sea for both semidiurnal and diurnal species and partially from the Luzon Strait for semidiurnal species. For the other parts of the South China Sea, the tidal motion is mainly maintained by the energy fluxes through the Luzon Strait. The energy inputs from the tide-generating force are negative for semidiurnal species and positive for diurnal species. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we describe the velocity structure and transport of the North Equatorial Current (NEC), the Kuroshio, and the Mindanao Current (MC) using repeated hydrographic sections near the Philippine coast. A most striking feature of the current system in the region is the undercurrent structure below the surface flow. Both the Luzon Undercurrent and the Mindanao Undercurrent appear to be permanent phenomena. The present data set also provides an estimate of the mean circulation diagram (relative to 1500 dbar) that involves a NEC transport of 41 Sverdrups (Sv), a Kuroshio transport of 14 Sv, and a MC transport of 27 Sv, inducing a mass balance better than 1 Sv within the region enclosed by stations. The circulation diagram is insensitive to vertical displacements of the reference level within the depth range between 1500 and 2500 dbar. Transport fluctuations are, in general, consistent with earlier observations; that is, the NEC and the Kuroshio vary in the same phase with a seasonal signal superimposed with interannual variations, and the transport of the MC is dominated by a quasi-biennial oscillation. Dynamic height distributions are also examined to explore the dynamics of the current system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.