991 resultados para BLUE EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface states in semiconductor nanowires (NWs) are detrimental to the NW optical and electronic properties and to their light emission-based applications, due to the large surface-to-volume ratio of NWs and the congregation of defects states near surfaces. In this paper, we demonstrated an effective approach to eliminate surface states in InAs NWs of zinc-blende (ZB) and wurtzite (WZ) structures and a dramatic recovery of band edge emission through surface passivation with organic sulfide octadecylthiol (ODT). Microphotoluminescence (PL) measurements were carried out before and after passivation to study the dominant recombination mechanisms and surface state densities of the NWs. For WZ-NWs, we show that the passivation removed the surface states and recovered the band-edge emission, leading to a factor of ∼19 reduction of PL linewidth. For ZB-NWs, the deep surface states were removed and the PL peaks width became as narrow as ∼250 nm with some remaining emission of near band-edge surface states. The passivated NWs showed excellent stability in atmosphere, water, and heat environments. In particular, no observable changes occurred in the PL features from the passivated NWs exposed in air for more than five months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of Au-catalyzed InP nanowires (NWs) by metalorganic chemical vapor deposition (MOCVD) has been studied in the temperature range of 400-510 °C and V/III ratio of 44-700. We demonstrate that minimal tapering of InP NWs can be achieved at 400 °C and V/III ratio of 350. Zinc-blende (ZB) or wurtzite (WZ) NWs is obtained depending on the growth conditions. 4K microphotoluminescence (μ-PL) studies show that emission energy is blue-shifted as growth temperature increases. By changing these growth parameters, one can tune the emission wavelength of InP NWs which is attractive for applications in developing novel optoelectronic devices. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A good quality graphene is transferred onto honeycomb-like CNTs arrays with inner supporting CNTs. The efficient field emission is demonstrated due to a high aspect ratio protrusions and graphene crack edges. A high efficient current density about 1.2 mA/cm2 at threshold electric field of 7.8 V/μm with a turn-on electric field of 1.8 V/μm at the current density of 10 μA/cm2 is observed due to high localized electric field. Stable field emission is tested in a vacuum chamber. The results are of significance to the development of Graphene based field emitters. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral and energetic characteristics of the cooperative recombination of high density electrons and holes in bulk GaAs are experimentally studied at room temperature. It is shown that the properties and parameters of femtosecond superradiant pulses are conditioned by the collective properties of electrons and holes. Electron-hole pairing and the formation of a short-living coherent e-h BCS state distinguish strongly the regime of cooperative emission from all radiative e-h recombination regimes, which have been observed earlier. The dependences of the energy gap (the order parameter), the Fermi energy, and the band gap of the coherent e-h BCS state on the concentration of electron-hole pairs are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the use of carbon nanotubes and graphene for key field emission applications. Herein we describe the growth of nanotubes and their optimization for use in electron microscopes, field emission displays and x-ray sources. We also present a novel edge-emitting graphene based structure for large area electron emission displays.