985 resultados para Automatic selection
Resumo:
Host feeding selection by the female pea leafminer, Liriomyza huidobrensis, on 47 species of plants was studied. The leaves were sectioned by microtome, and 15 characteristics of the leaf tissue structure were measured under a microscope. Correlation analysis between host feeding selection and leaf tissue structure indicated that the preference of host feeding selection was positively correlated with the percentage of moisture content of leaves and negatively with thickness of the epidermis wall, and densities of the palisade and spongy tissues of leaves. Leaf tissue structure was influential in feeding and probing behavior of female L. huidobrensis. So, thickness of epidermis wall, densities of the palisade and spongy tissues can act as a physical barrier to female oviposition. Furthermore, higher densities of palisade and spongy tissues can be considered a resistant trait which affects mining of leaf miner larvae as well. As a result, plants with lower leaf moisture content may not be suitable for the development of L. huidobrensis.
Resumo:
The consistency of laboratory sand model preparation for physical testing is a fundamental criterion in representing identical geotechnical issues at prototype scale. This objective led to the development of robotic apparatus to eliminate the non-uniformity in manual pouring. Previous studies have shown consistent sand models with high relative density between 50 to 90% produced by the automatic moving-hopper sand pourer at the University of Cambridge, based primarily on a linear correlation to flow rate. However, in the case of loose samples, the influence of other parameters, particularly the drop height, becomes more apparent. In this paper, findings on the effect of flow rate and drop height are discussed in relation to the layer thickness and relative density of loose sand samples. Design charts are presented to illustrate their relationships. The effect of these factors on different sand types is also covered to extend the use of the equipment. © 2010 Taylor & Francis Group, London.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
This paper presents an automatic speaker recognition system for intelligence applications. The system has to provide functionalities for a speaker skimming application in which databases of recorded conversations belonging to an ongoing investigation can be annotated and quickly browsed by an operator. The paper discusses the criticalities introduced by the characteristics of the audio signals under consideration - in particular background noise and channel/coding distortions - as well as the requirements and functionalities of the system under development. It is shown that the performance of state-of-the-art approaches degrades significantly in presence of moderately high background noise. Finally, a novel speaker recognizer based on phonetic features and an ensemble classifier is presented. Results show that the proposed approach improves performance on clean audio, and suggest that it can be employed towards improved real-world robustness. © EURASIP, 2009.
Resumo:
Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.
Resumo:
Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions
Resumo:
Automating the model generation process of infrastructure can substantially reduce the modeling time and cost. This paper presents a method to generate a sparse point cloud of an infrastructure scene using a single video camera under practical constraints. It is the first step towards establishing an automatic framework for object-oriented as-built modeling. Motion blur and key frame selection criteria are considered. Structure from motion and bundle adjustment are explored. The method is demonstrated in a case study where the scene of a reinforced concrete bridge is videotaped, reconstructed, and metrically validated. The result indicates the applicability, efficiency, and accuracy of the proposed method.
Resumo:
Vision based tracking can provide the spatial location of construction entities such as equipment, workers, and materials in large scale, congested construction sites. It tracks entities in video streams by inferring their locations based on the entities’ visual features and motion histories. To initiate the process, it is necessary to determine the pixel areas corresponding to the construction entities to be tracked in the following consecutive video frames. In order to fully automate the process, an automated way of initialization is needed. This paper presents the method for construction worker detection which can automatically recognize and localize construction workers in video frames. The method first finds the foreground areas of moving objects using a background subtraction method. Within these foreground areas, construction workers are recognized based on the histogram of oriented gradients (HOG) and histogram of the HSV colors. HOG’s have proved to work effectively for detection of people, and the histogram of HSV colors helps differentiate between pedestrians and construction workers wearing safety vests. Preliminary experiments show that the proposed method has the potential to automate the initialization process of vision based tracking.
Resumo:
Videogrammetry is an inexpensive and easy-to-use technology for spatial 3D scene recovery. When applied to large scale civil infrastructure scenes, only a small percentage of the collected video frames are required to achieve robust results. However, choosing the right frames requires careful consideration. Videotaping a built infrastructure scene results in large video files filled with blurry, noisy, or redundant frames. This is due to frame rate to camera speed ratios that are often higher than necessary; camera and lens imperfections and limitations that result in imaging noise; and occasional jerky motions of the camera that result in motion blur; all of which can significantly affect the performance of the videogrammetric pipeline. To tackle these issues, this paper proposes a novel method for automating the selection of an optimized number of informative, high quality frames. According to this method, as the first step, blurred frames are removed using the thresholds determined based on a minimum level of frame quality required to obtain robust results. Then, an optimum number of key frames are selected from the remaining frames using the selection criteria devised by the authors. Experimental results show that the proposed method outperforms existing methods in terms of improved 3D reconstruction results, while maintaining the optimum number of extracted frames needed to generate high quality 3D point clouds.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.
Resumo:
In this paper, a novel MPC strategy is proposed, and referred to as asso MPC. The new paradigm features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. This cost choice is motivated by the successful development of LASSO theory in signal processing and machine learning. In the latter fields, sum-of-norms regularisation have shown a strong capability to provide robust and sparse solutions for system identification and feature selection. In this paper, a discrete-time dual-mode asso MPC is formulated, and its stability is proven by application of standard MPC arguments. The controller is then tested for the problem of ship course keeping and roll reduction with rudder and fins, in a directional stochastic sea. Simulations show the asso MPC to inherit positive features from its corresponding regressor: extreme reduction of decision variables' magnitude, namely, actuators' magnitude (or variations), with a finite energy error, being particularly promising for over-actuated systems. © 2012 AACC American Automatic Control Council).
Resumo:
Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases. © 2009 IEEE.