985 resultados para Aquatic communities
Resumo:
Fossil pollen, stomata and charcoal were examined from a lake sedimentary sequence in the Glen Affric National Nature Reserve, one of the largest areas of remnant native pine woodland in Scotland, in order to assess ecosystem dynamics over the last 11 000 years. Results reveal that pinewood communities have been continuously present in East Glen Affric for the last 8300 years. Pinus sylvestris fi rst arrived in the area around 9900 cal. BP, but occurred in only low abundance for the subsequent 1600 years. Pine populations expanded around 8300 cal. BP and remained in relatively constant abundance throughout the remainder of the Holocene. There is no evidence of a hypothesized regional mid-Holocene ‘ pine decline ’ at the site. Charcoal results reveal that pinewood communities in East Glen Affric do not appear to have been dependent on fire for either their establishment or their maintenance as has previously been suggested.
Resumo:
Understanding climate change and its potential impact on species, populations and communities is one of the most pressing questions of twenty-fi rst-century conservation planning. Palaeobiogeographers working on Cenozoic fossil records and other lines of evidence are producing important insights into the dynamic nature of climate and the equally dynamic response of species, populations and communities. Climatic variations ranging in length from multimillennia to decades run throughout the palaeo-records of the Quaternary and earlier Cenozoic and have been shown to have had impacts ranging from changes in the genetic structure and morphology of individual species, population sizes and distributions, community composition to large-scale bio-diversity gradients. The biogeographical impacts of climate change may be due directly to the effects of alterations in temperature and moisture on species, or they may arise due to changes in factors such as disturbance regimes. Much of the recent progress in the application of palaeobiogegraphy to issues of climate change and its impacts can be attributed to developments along a number of still advancing methodological frontiers. These include increasingly finely resolved chronological resolution, more refi ned atmosphere-biosphere modelling, new biological and chemical techniques in reconstructing past species distributions and past climates, the development of large and readily accessible geo-referenced databases of biogeographical and climatic information, and new approaches in fossil morphological analysis and new molecular DNA techniques.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.
Resumo:
Sargassum muticum is an invasive brown macroalga that originates from Japan. In the introduced range, thalli can grow in soft substratum habitats attached to embedded rock fragments and shells, Within Strangford Lough, Northern Ireland, S. muticum has rapidly colonised large areas of soft substrata, where dispersal by peripatetic or 'stone-walking' plants is very effective. Sediment cores were collected under and outside canopies of S. muticum in Strangford Lough (S. muticum first recorded there in 1995) and Langstone Harbour, English Channel (S. muticum first found there in 1974) to investigate modification of the infaunal assemblages. At both study sites, community analyses highlighted significant differences between the assemblages under the canopies and those in adjacent unvegetated areas. In Strangford Lough, the invertebrate community under the canopy contained a higher abundance of smaller, opportunistic, r-selected species than outside the canopy. By contrast, the communities under and outside the canopy at Langstone Harbour were similar in species composition, diversity and dominance, but overall faunal abundance was greater under the canopy. Sediment characteristics were not affected by S. muticum canopies, but the infaunal changes may be related to environmental modification; shading, flow suppression and temperature stratification were also investigated. The differences between these 2 sites indicate that localised conditions and/or the duration of colonisation of S. muticum are important in determining the nature of habitat modification.
Resumo:
Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.
Resumo:
Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.
Resumo:
Proper application of stable isotopes (e. g., delta N-15 and delta C-13) to food web analysis requires an understanding of all nondietary factors that contribute to isotopic variability. Lipid extraction is often used during stable isotope analysis (SIA), because synthesized lipids have a low delta C-13 and can mask the delta C-13 of a consumer's diet. Recent studies indicate that lipid extraction intended to adjust delta C-13 may also cause shifts in delta N-15, but the magnitude of and reasons for the shift are highly uncertain. We examined a large data set (n = 854) for effects of lipid extraction (using Bligh and dyer's [ 1959] chloroform-methanol solvent mixtures) on the delta N-15 of aquatic consumers. We found no effect of chemically extracting lipids on the delta N-15 of whole zooplankton, unionid mussels, and fish liver samples, and found a small increase in fish muscle delta N-15 of similar to 0.4%. We also detected a negative relationship between the shift in delta N-15 following extraction and the C:N ratio in muscle tissue, suggesting that effects of extraction were greater for tissue with lower lipid content. As long as appropriate techniques such as those from Bligh and dyer (1959) are used, effects of lipid extraction on delta N-15 of aquatic consumers need not be a major consideration in the SIA of food webs.
Resumo:
Gammarus spp. are traditionally viewed under the functional feeding group (FFG) concept as herbivorous 'shredders'. Although recent studies suggest that Gammarus should also be viewed as predators, this latter role remains contentious. Here, in a laboratory experiment, we objectively examine the balance between shredder and predator roles in a common freshwater species. Gammarus pulex preyed significantly on mayfly nymph, Baetis rhodani, in both the presence and absence of excess leaf material. There was no significant difference in predation where the alternative food, that is, leaf material, was present as compared to absent. Also, G. pulex shredded leaf material in the presence and absence of B. rhodani. However, shredding was significantly reduced where alternative food, that is, B. rhodani prey, was present as compared to absent. Further, G. pulex had a clear leaf species preference. Our results suggest that Gammarus function as both predators and shredders, with the balance of the two roles perhaps depending on food availability and quality. We discuss implications for the use of the FFG concept in assessing freshwater processes, and the role that Gammarus predation may play in structuring macroinvertebrate communities.
Resumo:
Hull fouling is thought to have been the vector of introduction for many algal species. We studied ships arriving at a Mediterranean harbour to clarify the present role of commercial cargo shipping in algal introductions. A total of 31 macroalgal taxa were identified from 22 sampled hulls. The majority of records (58%) were of species with a known cosmopolitan geographical distribution. Due to a prevalence of cosmopolitan species and a high turnover of fouling communities, species composition of assemblages did not appear to be influenced by the area of origin, length of ship or age of coating. In the light of the present results, hull fouling on standard trading commercial vessels does not seem to pose a significant risk for new macroalgal species introductions. However, a high proportion of non-cosmopolitan species found on a ship with non-toxic coating may modify this assessment, especially in the light of the increasing use of such coatings and the potential future changes in shipping routes.
Resumo:
There is an extensive literature on various aspects of segregation in Northern Ireland (NI). However, there are no census-based analyses of population change and residential segregation that cover the entire 1971 – 2001 period using consistent geographical units through time for all NI. This shortcoming is addressed in this paper by an analysis of changes in (ihs1) the spatial distribution of population and (iihs1) residential segregation between 1971 and 2001 using the NI Grid-Square Product comprising data for a set of 1 rm km2 cells that cover all populated areas in NI. The substantive issue of whether NI has become more segregated through time is addressed as are questions about measuring change through time using the census and the importance of spatial scale. One important conclusion is that NI indeed became more residentially segregated between 1971 and 2001, but that residential segregation in 2001 remained approximately at its 1991 level according to most indicators.