982 resultados para Antiviral activity
Resumo:
Hepatitis C virus infection is a major health problem worldwide. Developing effective antiviral therapy for HCV is the need of the hour. The viral enzymes NS3 protease and NS5B RNA dependent RNA polymerase are essential enzymes for polyprotein processing and viral RNA replication and thus can be potential targets for screening anti-HCV compounds. A large number of phytochemicals are present in plants, which are found to be promising antiviral agents. In this study, we have screened inhibitory effect of different plant extracts against the NS3 and NS5B enzymes of hepatitis C virus. Methanolic extracts were prepared from various plant materials and their inhibitory effects on the viral enzymes were determined by in vitro enzyme assays. Effect on viral RNA replication was investigated by using TaqMan Real time RT-PCR. Interestingly, Phyllanthus amarus root (PAR) extract showed significant inhibition of HCV-NS3 protease enzyme; whereas P. amarus leaf (PAL) extract showed considerable inhibition of NS5B in the in vitro assays. Further, the PAR and PAL extracts significantly inhibited replication of HCV monocistronic replicon RNA and HCV H77S viral RNA in HCV cell culture system. However, both PAR and PAL extracts did not show cytotoxicity in Huh7 cells in the MTT assay. Furthermore, addition of PAR together with IFN-alpha showed additive effect in the inhibition of HCV RNA replication. Results suggest the possible molecular basis of the inhibitory activity of PA extract against HCV which would help in optimization and subsequent development of specific antiviral agent using P. amarus as potent natural source. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be similar to 10% after 7000 accelerated potential-cycles as against similar to 60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand > 10 000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.
Resumo:
The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
ZnO nanostructured films were deposited at room temperature on glass substrates and cotton fabrics by activated reactive evaporation in a single step without using metal catalyst or templates. Morphological observation has shown that the nanostructured film contains seaurchin-like structures, and this seaurchin containing large number of randomly grown ZnO nanoneedles. Microstructural analysis revealed the single crystalline nature of the grown nanoneedles and their growth direction was indentified to be along [0002]. PL spectrum of nanostructured films has shown a relatively weak near-band-edge emission peak at 380 nm, and a significant broad peak at 557 nm due to the oxygen vacancy-related emission. ZnO nanostructured films grown on glass substrates and cotton fabrics have shown good photocatalytic activity against rhodamine B.
Resumo:
Ternary Schiff base copper(II) complex [CuL(phen)](ClO4), where HL is 2-(methylthio)ethylsalicylaldimine and phen is 1,10-phenanthroline, has been prepared and structurally characterized by X-ray crystallography. The complex shows a CuN3OS coordination in a square-pyramidal (4 + 1) geometry with the sulfur as an equatorial ligand. The complex is an avid binder to double-stranded DNA in the minor groove and exhibits both photonuclease and chemical nuclease activity. When exposed to UV light of 312 nm (96 W) or visible light of 532 nm (125 W) under aerobic conditions, the complex causes significant cleavage of supercoiled pUC19 DNA in the absence of any externally added reducing agent or H2O2.
Resumo:
Ferromagnetic dicopper(II) complexes [Cu(2)(mu-O(2)CCH(3))(mu-OH)(L)(2)(mu-L(1))](PF(6))(2), where L = 1,10-phenanthroline (phen), L(1) = H(2)O in 1 and L = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), L(1) = CH(3)CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P2(1)/n and P2(1)/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H(2)O in 1 and CH(3)CN in 2. The Cu center dot center dot center dot Cu distances are 3.034 and 3.046 angstrom in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)(2)(BNPP)](PF(6)) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.
Resumo:
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)] (ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at similar to 0.5 V vs SCE in DMF-0.1 M [Bu(4)(n)N] (ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at similar to 450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 mu M, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.
Resumo:
To explore the anticancer effect associated with the piperidine framework, several (substituted phenyl) {4-[3-(piperidin-4-yl)propyl]piperidin-1-yl} methanone derivatives 3(a-i) were synthesized. Variation in the functional group at N-terminal of the piperidine led to a set of compounds bearing amide moiety. Their chemical structures were confirmed by (1)H NMR, IR and mass spectra analysis. Among these, compounds 3a, 3d and 3e were endowed with antiproliferative activity. The most active compound among this series was 3a with nitro and fluoro substitution on the phenyl ring of aryl carboxamide moiety, which inhibited the growth of human leukemia cells (K562 and Reh) at low concentration. Comparison with other derivative (3h) results shown by LDH assay, cell cycle analysis and DNA fragmentation suggested that 3a is more potent to induce apoptosis.
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.