991 resultados para Angular distribution
Resumo:
The three-dimensional distribution of light intensity that is modulated by a pure phase-shifting apodizer is studied. Results show that the Strehl ratio can be altered by the proposed apodizer and by the waist width of incident Gaussian beams. By changing geometrical parameters of the proposed apodizer, we can increase the focal depth to several times that of the original system. The proposed apodizer can also be used to realize focal splitting and local minimum of intensity, which may be advantageous for constructing an optical trap. Furthermore, the local minimum of intensity number is tunable by changing the parameters of the apodizer. (c) 2005 Optical Society of America
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Resumo:
Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform (FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicating the good thermal stability of InnoSlab laser. Such a new kind of laser can be designed and optimized on the base of this simulation.
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
In the early 20th century, a blue mussel species from the Mediterranean invaded the California coast and subsequently out-competed the native species south of Monterey Bay. Like other invasive species, Mytilus galloprovincialis has physiological traits that make it successful in habitats formerly occupied by the native M. trossulus, namely its adaptation to warm sea surface temperatures. This study looks at the current genotype distributions and enzymatic activities of field-acclimatized mussels within the hybrid zone where the species co-occur as well as mussels that have been acclimated for four weeks to different temperature and salinity conditions. In the field-acclimatized and laboratory-acclimated mussels, the native species exhibited significantly higher enzyme rates, which may reflect an evolutionary adaptation to compensate to low habitat temperatures. Indeed, the results of the laboratory acclimation indicate that these differences are genetically based. Whether an acclimation capacity exists may require even longer-term acclimation to different temperatures. Current findings suggest that the further spread of the invasive species is likely to be governed in large measure by the potentially counteracting effects of rising temperatures, which would favor the northerly spread of M. galloprovincialis, and increased winter precipitation, which would favor the persistence of M. trossulus. However, the success of M. galloprovincialis during acclimation to ‘dilute’ salinity (25 ppt) suggests that the invasive species can tolerate a greater salinity range than previously thought. Thus, further investigation is needed to build a comprehensive predictive model of the movement of M. galloprovincialis and the hybrid zone along the California coast.
Resumo:
FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.
Resumo:
Blowflies are insects of forensic interest as they may indicate characteristics of the environment where a body has been laying prior to the discovery. In order to estimate changes in community related to landscape and to assess if blowfly species can be used as indicators of the landscape where a corpse has been decaying, we studied the blowfly community and how it is affected by landscape in a 7,000 km(2) region during a whole year. Using baited traps deployed monthly we collected 28,507 individuals of 10 calliphorid species, 7 of them well represented and distributed in the study area. Multiple Analysis of Variance found changes in abundance between seasons in the 7 analyzed species, and changes related to land use in 4 of them (Calliphora vomitoria, Lucilia ampullacea, L. caesar and L. illustris). Generalised Linear Model analyses of abundance of these species compared with landscape descriptors at different scales found only a clear significant relationship between summer abundance of C. vomitoria and distance to urban areas and degree of urbanisation. This relationship explained more deviance when considering the landscape composition at larger geographical scales (up to 2,500 m around sampling site). For the other species, no clear relationship between land uses and abundance was found, and therefore observed changes in their abundance patterns could be the result of other variables, probably small changes in temperature. Our results suggest that blowfly community composition cannot be used to infer in what kind of landscape a corpse has decayed, at least in highly fragmented habitats, the only exception being the summer abundance of C. vomitoria.
Resumo:
This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.
Resumo:
[EN]This research had as primary objective to model different types of problems using linear programming and apply different methods so as to find an adequate solution to them. To achieve this objective, a linear programming problem and its dual were studied and compared. For that, linear programming techniques were provided and an introduction of the duality theory was given, analyzing the dual problem and the duality theorems. Then, a general economic interpretation was given and different optimal dual variables like shadow prices were studied through the next practical case: An aesthetic surgery hospital wanted to organize its monthly waiting list of four types of surgeries to maximize its daily income. To solve this practical case, we modelled the linear programming problem following the relationships between the primal problem and its dual. Additionally, we solved the dual problem graphically, and then we found the optimal solution of the practical case posed through its dual, following the different theorems of the duality theory. Moreover, how Complementary Slackness can help to solve linear programming problems was studied. To facilitate the solution Solver application of Excel and Win QSB programme were used.