1000 resultados para Anchors, Sea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-TibetanPlateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1 alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan- Plateau mammals andsea- level mice after injection of CoCl2 (20, 40, or 60 mg/ kg) and normobaric hypoxia (16.0% O-2, 10.8% O-2, and 8.0% O-2) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl2 markedly increased 1) HIF-1 alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl2 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1 alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O-2) not in O. curzoniae. Results suggest that 1) HIF-1 alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl2 induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl2 reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau- acclimatized mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soft shell clam, Mya arenaria, and the razor clam, Ensis siliqua, are widely distributed in Irish waters. Though the reproductive biology and other aspects of the physiology of these species has been previously investigated, little or no data are currently available on their health status. As this knowledge is essential for correct management of a species, M. arenaria and E. siliqua were examined to assess their current health status using histological and molecular methods, over a period of sixteen months. No pathogens or disease were observed in M. arenaria, and low incidences of Prokaryote inclusions, trematode parasites, Nematopsis spp. and eosinophilic bodies were recorded in razor clams for the first time in Northern European waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the reproductive cycle of a species is a prerequisite for sustainable management of a fishery. The infaunal marine bivalve, Ensis siliqua, is a commercially important species in Europe, and is exploited in many countries, including Ireland, where it is sold by wet weight. Seasonal variations in the reproductive cycle of subtidal razor clams from the Skerries region of the Irish Sea, an important fisheries area, were examined between June 2010 and September 2011 while monitoring weight. Histological examination revealed that the E. siliqua sex-ratio was not different from parity, and no hermaphrodites were observed in the samples collected. In the summer months of 2010 all female clams were either spent or in early development, with just a small percentage of males still spawning. The gonads of both sexes developed over the autumn and winter months of 2010, with the first spawning individuals recorded in January 2011. Spawning peaked in March 2011, but unlike in 2010, spawning continued through June and July with all animals spent in August 2011. The earlier and longer spawning period found in this species in 2011 compared to 2010 may have been due to the colder than normal temperature observed during the winter of 2010 plus the relatively warmer temperatures of Spring 2011, which could have affected the gametogenic development of E. siliqua in the Irish Sea. It was noted that wet weight dropped in the summer months of both years, immediately after the spawning period which may impact on the practicality of fishing for this species during this period. Timing of development and spawning is compared with other sites in the Irish Sea and elsewhere in Europe, including the Iberian Peninsula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climatic development of the Mid to Late Quaternary (last 400,000 years) is characterised by fluctuation between glacial and interglacial periods leading to the present interglacial, the Holocene. In comparison to preceding periods it was believed the Holocene represented a time of relative climatic stability. However, recent work has shown that the Holocene can be divided into cooler periods such as the Little Ice Age alternating with time intervals where climatic conditions ameliorated i.e. Medieval Warm Period, Holocene Thermal Optimum and the present Modern Optimum. In addition, the Holocene is recognised as a period with increasing anthropogenic influence on the environment. Onshore records recording glacial/interglacial cycles as well as anthropogenic effects are limited. However, sites of sediment accumulation on the shallow continental shelf offer the potential to reconstruct these events. Such sites include tunnel valleys and low energy, depositional settings. In this study we interrogated the sediment stratigraphy at such sites in the North Sea and Irish Sea using traditional techniques, as well as novel applications of geotechnical data, to reconstruct the palaeoenvironmental record. Within the German North Sea sector a combination of core, seismic and in-situ Cone Penetration Testing (CPT) data was used to identify sedimentary units, place them within a morphological context, relate them to glacial or interglacial periods stratigraphically, and correlate them across the German North Sea. Subsequently, we were able to revise the Mid to Late Quaternary stratigraphy for the North Sea using this new and novel data. Similarly, Holocene environmental changes were investigated within the Irish Sea at a depositional site with active anthropogenic influence. The methods used included analyses on grain-size distribution, foraminifera, gamma spectrometry, AMS 14C and physical core logging. The investigation revealed a strong fluctuating climatic signal early in the areas history before anthropogenic influence affects the record through trawling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.