960 resultados para Alkali lands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community-based natural resource management (CBNRM) is the joint management of natural resources by a community based on a community strategy, through a participatory mechanism involving all legitimate stakeholders. The approach is community-based in that the communities managing the resources have the legal rights, the local institutions and the economic incentives to take substantial responsibility for sustained use of these resources. This implies that the community plays an active role in the management of natural resources, not because it asserts sole ownership over them, but because it can claim participation in their management and benefits for practical and technical reasons1–4. This approach emerged as the dominant conservation concept in the late 1970s and early 1980s, of the disillusionment with the developmental state. Governments across South and South East Asia, Africa and Latin America have adopted and implemented CBNRM in various ways, viz. through sectoral programmes such as forestry, irrigation or wildlife management, multisectoral programmes such as watershed development and efforts towards political devolution. In India, the principle of decentralization through ‘gram swaraj’ was introduced by Mahatma Gandhi. The 73rd and 74th constitution amendments in 1992 gave impetus to the decentralized planning at panchayat levels through the creation of a statutory three-level local self-government structure5,6. The strength of this book is that it includes chapters by CBNRM advocates based on six seemingly innovative initiatives being implemented by nongovernmental organizations (NGOs) in ecologically vulnerable regions of South Asia: two in the Himalayas (watershed development programme in Lingmutechhu, Bhuthan and Thalisain tehsil, Paudi Grahwal District, Uttarakhand), three in semi-arid parts of western India (watershed development in Hivre Bazar, Maharashtra and Nathugadh village, Gujarat and water-harvesting structures in Gopalapura, Rajasthan) and one in the flood-plains of the Brahmaputra–Jamuna (Char land, Galibanda and Jamalpur districts, Bangladesh). Watersheds in semi-arid regions fall in the low-rainfall region (500–700 mm) and suffer the vagaries of drought 2–3 years in every five-year cycle. In all these locations, the major occupation is agriculture, most of which is rainfed or dry. The other two cases (in Uttarakhand) fall in the Himalayan region (temperate/sub-temperate climate), which has witnessed extensive deforestation in the last century and is now considered as one of the most vulnerable locations in South Asia. Terraced agriculture is being practised in these locations for a long time. The last case (Gono Chetona) falls in the Brahmaputra–Jamuna charlands which are the most ecologically vulnerable regions in the sub-continent with constantly changing landscape. Agriculture and livestock rearing are the main occupations, and there is substantial seasonal emigration for wage labour by the adult males. River erosion and floods force the people to adopt a semi-migratory lifestyle. The book attempts to analyse the potential as well as limitations of NGOdriven CBNRM endeavours across agroclimatic regions of South Asia with emphasis on four intrinsically linked normative concerns, namely sustainability, livelihood enhancement, equity and demographic decentralization in chapters 2–7. Comparative analysis of these case studies done in chapter 8, highlights the issues that require further research while portraying the strengths and limits of NGO-driven CBNRM. In Hivre Bazar, the post-watershed intervention scenario is such that farmers often grow three crops in a year – kharif bajra, rabi jowar and summer vegetable crops. Productivity has increased in the dry lands due to improvement in soil moisture levels. The revival of johads in Gopalpura has led to the proliferation of wheat and increased productivity. In Lingmuteychhu, productivity gains have also arisen, but more due to the introduction of both local and high-yielding, new varieties as opposed to increased water availability. In the case of Gono Chetona, improvements have come due to diversification of agriculture; for example, the promotion of vegetable gardens. CBNRM interventions in most cases have also led to new avenues of employment and income generation. The synthesis shows that CBNRM efforts have made significant contributions to livelihood enhancement and only limited gains in terms of collective action for sustainable and equitable access to benefits and continuing resource use, and in terms of democratic decentralization, contrary to the objectives of the programme. Livelihood benefits include improvements in availability of livelihood support resources (fuelwood, fodder, drinking water), increased productivity (including diversification of cropping pattern) in agriculture and allied activities, and new sources of livelihood. However, NGO-driven CBNRM has not met its goal of providing ‘alternative’ forms of ‘development’ due to impediments of state policy, short-sighted vision of implementers and confrontation with the socio-ecological reality of the region, which almost always are that of fragmented communities (or communities in flux) with unequal dependence and access to land and other natural resources along with great gender imbalances. Appalling, however, is the general absence of recognition of the importance of and the will to explore practical ways to bring about equitable resource transfer or benefit-sharing and the consequent innovations in this respect that are evident in the pioneering community initiatives such as pani panchayat, etc. Pertaining to the gains on the ecological sustainability front, Hivre Bazar and Thalisain initiatives through active participation of villagers have made significant regeneration of the water table within the village, and mechanisms such as ban on number of bore wells, the regulation of cropping pattern, restrictions on felling of trees and free grazing to ensure that in the future, the groundwater is neither over-exploited nor its recharge capability impaired. Nevertheless, the longterm sustainability of the interventions in the case of Ghoga and Gopalpura initiatives as the focus has been mostly on regeneration of resources, and less on regulating the use of regenerated resources. Further, in Lingmuteychhu and Gono Chetona, the interventions are mainly household-based and the focus has been less explicit on ecological components. The studies demonstrate the livelihood benefits to all of the interventions and significant variation in achievements with reference to sustainability, equity and democratic decentralization depending on the level and extent of community participation apart from the vision of implementers, strategy (or nature of intervention shaped by the question of community formation), the centrality of community formation and also the State policy. Case studies show that the influence of State policy is multi-faceted and often contradictory in nature. This necessitates NGOs to engage with the State in a much more purposeful way than in an ‘autonomous space’. Thus the role of NGOs in CBNRM is complementary, wherein they provide innovative experiments that the State can learn. This helps in achieving the goals of CBNRM through democratic decentralization. The book addresses the vital issues related to natural resource management and interests of the community. Key topics discussed throughout the book are still at the centre of the current debate. This compilation consists of well-written chapters based on rigorous synthesis of CBNRM case studies, which will serve as good references for students, researchers and practitioners in the years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligand-induced stabilization of G-quadruplex structures formed by the human telomeric DNA is an active area of research. The compounds which stabilize the G-quadruplexes often lead to telomerase inhibition. Herein we present the results of interaction of new monomeric and dimeric ligands having 1,3-phenylene-bis(piperazinyl benzimidazole) unit with G-quadruplex DNA (G4DNA) formed by human telomeric repeat d(G(3)T(2)A)(3)G(3)]. These ligands efficiently stabilize the preformed G4DNA in the presence of 100 mM monovalent alkali metal ions. Also, the G4DNA formed in the presence of low concentrations of ligands in 100 mM K+ adopts a highly stable parallel-stranded conformation. The G-quadruplexes formed in the presence of the dimeric compound are more stable than that induced by the corresponding monomeric counterpart. The dimeric ligands having oligo-oxyethylene spacers provide much higher stability to the preformed G4DNA and also exert significantly higher telomerase inhibition activity. Computational aspects have also been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new three-dimensional Mn2+ ion-containing compounds have been prepared by employing a hydrothermal reaction between Mn(CH3COO)(2)center dot 4H(2)O, sulfodibenzoic acid (H(2)SDBA), imidazole, alkali hydroxide and water at 220 degrees C for 1 day. The compounds have Mn-5 (1-4) clusters connected by SDBA, forming the three-dimensional structure. A time and temperature dependent study on the synthesis mixture revealed the formation of a one-dimensional compound, Mn(SDBA)(H2O)(2), at lower temperatures (T <= 180 degrees C). The stabilization of the fcu related topology in the compounds is noteworthy. Magnetic studies indicate strong anti-ferromagnetic interactions between the Mn2+ ions within the clusters in the temperature range 75-300 K. The rare participation of a sulfonyl group in the bonding is important and can pave way for the design of new structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin noise phenomenon was predicted way back in 1946. However, experimental investigations regarding spin noise became possible only recently with major technological improvements in NMR hardware. These experiments have several potential novel applications and also demand refinements in the existing theoretical framework to explain the phenomenon. Elegance of noise spectroscopy in gathering information about the properties of a system lies in the fact that it does not require external perturbation, and the system remains in thermal equilibrium. Spin noise is intrinsic magnetic fluctuations, and both longitudinal and transverse components have been detected independently in many systems. Detection of fluctuating longitudinal magnetization leads to field of Magnetic Resonance Force Microscopy (MRFM) that can efficiently probe very few spins even down to the level of single spin utilizing ultrasensitive cantilevers. Transverse component of spin noise, which can simultaneously monitor different resonances over a given frequency range enabling one to distinguish between different chemical environments, has also received considerable attention, and found many novel applications. These experiments demand a detailed understanding of the underlying spin noise phenomenon in order to perform perturbation-free magnetic resonance and widen the highly promising application area. Detailed investigations of noise magnetization have been performed recently using force microscopy on equilibrium ensemble of paramagnetic alkali atoms. It was observed that random fluctuations generate spontaneous spin coherences which has similar characteristics as generated by macroscopic magnetization of polarized ensemble in terms of precession and relaxation properties. Several other intrinsic properties like g-factors, isotope-abundance ratios, hyperfine splitting, spin coherence lifetimes etc. also have been achieved without having to excite the sample. In contrast to MRFM-approaches, detection of transverse spin noise also offers novel applications, attracting considerable attention. This has unique advantage as different resonances over a given frequency range enable one to distinguish between different chemical environments. Since these noise signatures scale inversely with sample size, these approaches lead to the possibility of non-perturbative magnetic resonance of small systems down to nano-scale. In this review, these different approaches will be highlighted with main emphasis on transverse spin noise investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impedance spectroscopic studies on modified phospho-vanadate glasses containing SO42- ions have been carried out over wide range of frequency. Modulated DSC studies suggest that the addition of alkali salt makes the glass less rigid and more fragile. The frequency dependent impedance data has been used to calculate d.c conductivity and activation energies. These values are comparable with the other ionic liquids. The conductivity and relaxation phenomenon was rationalized using universal a.c conductivity power law and modulus formalism. The activation energies for relaxation mechanism was also determined using imaginary parts of electrical modulus peaks which were close to those of the d.c conductivity implying the involvement of similar energy barriers in both the processes. Kohlrausch-William-Watts (KWW) stretched exponent beta, is temperature insensitive and power law (s) exponent is temperature dependent. The enhanced conductivity in these glasses is attributed to the depolymerised structure in which migration of Na+ ions proceeds in an expanded network comprising SO42- ions in the interstitials. The effect of structure on activation energy is well supported by abinitio DFT computations. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi1-xCaxFe1-xCoxO3 nanoparticles with x=0.0, 0.05, 0.10 and 0.15 were successfully synthesized by cost effective tartaric acid based sol gel route. The alkali earth metal Ca2+ ions and transition metal Co3+ ions codoping at A and B-sites of BiFeO3 results in structural distortion and phase transformation. Rietveld refinement of XRD patterns suggested the coexistence of rhombohedral and orthorhombic phases in codoped BiFeO3 samples. Both XRD and Raman scattering studies showed the compressive lattice distortion in the samples induced by codoping of Ca2+ and Co3+ ions. Two-phonon Raman spectra exhibited the improvement of magnetization in these samples. X-ray photoelectron spectroscopy (XPS) showed the dominancy of Fe3+ and Co3+ oxidation states along with the shifting of the binding energy of Bi 4f orbital which confirms the substitution Ca2+ at Bi-site. The magnetic study showed the enhancement in room temperature ferromagnetic behavior with co-substitution consistent with Rama analysis. The gradual change in line shape of electron spin resonance spectra indicated the local distortion induced by codoping. (C) 2015 Published by Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 degrees C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 degrees C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.