951 resultados para Air bag restraint systems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis conceptualises Use for IS (Information Systems) success. While Use in this study describes the extent to which an IS is incorporated into the user’s processes or tasks, success of an IS is the measure of the degree to which the person using the system is better off. For IS success, the conceptualisation of Use offers new perspectives on describing and measuring Use. We test the philosophies of the conceptualisation using empirical evidence in an Enterprise Systems (ES) context. Results from the empirical analysis contribute insights to the existing body of knowledge on the role of Use and demonstrate Use as an important factor and measure of IS success. System Use is a central theme in IS research. For instance, Use is regarded as an important dimension of IS success. Despite its recognition, the Use dimension of IS success reportedly suffers from an all too simplistic definition, misconception, poor specification of its complex nature, and an inadequacy of measurement approaches (Bokhari 2005; DeLone and McLean 2003; Zigurs 1993). Given the above, Burton-Jones and Straub (2006) urge scholars to revisit the concept of system Use, consider a stronger theoretical treatment, and submit the construct to further validation in its intended nomological net. On those considerations, this study re-conceptualises Use for IS success. The new conceptualisation adopts a work-process system-centric lens and draws upon the characteristics of modern system types, key user groups and their information needs, and the incorporation of IS in work processes. With these characteristics, the definition of Use and how it may be measured is systematically established. Use is conceptualised as a second-order measurement construct determined by three sub-dimensions: attitude of its users, depth, and amount of Use. The construct is positioned in a modified IS success research model, in an attempt to demonstrate its central role in determining IS success in an ES setting. A two-stage mixed-methods research design—incorporating a sequential explanatory strategy—was adopted to collect empirical data and to test the research model. The first empirical investigation involved an experiment and a survey of ES end users at a leading tertiary education institute in Australia. The second, a qualitative investigation, involved a series of interviews with real-world operational managers in large Indian private-sector companies to canvass their day-to-day experiences with ES. The research strategy adopted has a stronger quantitative leaning. The survey analysis results demonstrate the aptness of Use as an antecedent and a consequence of IS success, and furthermore, as a mediator between the quality of IS and the impacts of IS on individuals. Qualitative data analysis on the other hand, is used to derive a framework for classifying the diversity of ES Use behaviour. The qualitative results establish that workers Use IS in their context to orientate, negotiate, or innovate. The implications are twofold. For research, this study contributes to cumulative IS success knowledge an approach for defining, contextualising, measuring, and validating Use. For practice, research findings not only provide insights for educators when incorporating ES for higher education, but also demonstrate how operational managers incorporate ES into their work practices. Research findings leave the way open for future, larger-scale research into how industry practitioners interact with an ES to complete their work in varied organisational environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams for information filtering systems. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on the RCV1 data collection, and substantial experiments show that the proposed approach achieves encouraging performance and the performance is also consistent for adaptive filtering as well.