995 resultados para Age, 14C calibrated, CALIB 6.0 and Marine09 (Reimer et al., 2009)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suborbital climate variability during the last glacial period is suggested to have involved a 1500-year pacing cycle, but the expression and spatial distribution of the ~1500-year oscillation during interglacials remains unclear. We generated a multidecade resolution record of alkenone sea surface temperature (SST) in the northwestern Pacific off central Japan during the Holocene. The SST record showed centennial and millennial variability with an amplitude of ~1 °C throughout the entire Holocene. Spectral analysis for SST variation revealed a statistically significant peak with 1470-year periodicity. The SST variation partly correlated with the variations of ice-rafted hematite-stained grain content in North Atlantic sediments. These findings indicate that the mean latitude of the Kuroshio Extension has varied on a 1500-year cycle, and suggest that a climatic link exists between the North Pacific gyre system and the high-latitude North Atlantic thermohaline circulation. The regular pacing at 1500-year intervals seen throughout both the Holocene and the last glacial period suggests that the oscillation was a response to external forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 87Sr/86Sr ratio of ancient seawater, as recorded in marine carbonates, is an important tracer of long-term variations in ocean chemistry (Burke et al., 1982, doi:10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2; Peterman et al., 1970, doi:10.1016/0016-7037(70)90154-7; Dasch and Biscaye, 1971, doi:10.1016/0012-821X(71)90164-6; Veizer and Compston, 1974, doi:10.1016/0016-7037(74)90099-4; Brass, 1976, doi:10.1016/0016-7037(76)90025-9). However, the Sr isotope balance of the oceans has been difficult to constrain; consequently, attempts to evaluate the temporal 87Sr/86Sr changes have been largely qualitative. To constrain the causes of these variations we have measured 87Sr/86Sr ratios in carefully cleaned unrecrystallized foraminifera from DSDP sites 21 and 357. The data presented here have been quantitatively modelled taking advantage of recent advances in understanding of the Sr geochemical cycle. They suggest that whereas hydrothermal fluxes and carbonate recycling are of major importance in defining the marine 87Sr/86Sr ratio, the major control over its variations through the Cenozoic has been changes in the isotope composition of Sr derived from the weathering of silicate rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.