984 resultados para Advanced oxidation processes
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
The peace process in Northern Ireland demonstrates that new sovereignty formulas need to be explored in order to meet the demands of the populations and territories in conflict. The profound transformation of the classic symbolic elements of the nation-state within the context of the European Union has greatly contributed to the prospects for a resolution of this old conflict. Today’s discussions are focused on the search for instruments of shared sovereignty that are adapted to a complex and plural social reality. This new approach for finding a solution to the Irish conflict is particularly relevant to the Basque debate about formulating creative and modern solutions to similar conflicts over identity and sovereignty. The notion of shared sovereignty implemented in Northern Ireland –a formula for complex interdependent relations– is of significant relevance to the broader international community and is likely to become an increasingly potent and transcendent model for conflict resolution and peace building.
Resumo:
BACKGROUND: The pattern of substrate utilization with diets containing a high or a low proportion of unavailable and slowly digestible carbohydrates may constitute an important factor in the control, time course, and onset of hunger in humans. OBJECTIVE: We tested the hypothesis that isoenergetic diets differing only in their content of unavailable carbohydrates would result in different time courses of total, endogenous, and exogenous carbohydrate oxidation rates. DESIGN: Two diets with either a high (H diet) or a low (L diet) content of unavailable carbohydrates were fed to 14 healthy subjects studied during two 24-h periods in a metabolic chamber. Substrate utilization was assessed by whole-body indirect calorimetry. In a subgroup of 8 subjects, endogenous and exogenous carbohydrate oxidation were assessed by prelabeling the body glycogen stores with [(13)C]carbohydrate. Subjective feelings of hunger were estimated with use of visual analogue scales. RESULTS: Total energy expenditure and substrate oxidation did not differ significantly between the 2 diets. However, there was a significant effect of diet (P: = 0.03) on the carbohydrate oxidation pattern: the H diet elicited a lower and delayed rise of postprandial carbohydrate oxidation and was associated with lower hunger feelings than was the L diet. The differences in hunger scores between the 2 diets were significantly associated with the differences in the pattern of carbohydrate oxidation among diets (r = -0.67, P: = 0. 006). Exogenous and endogenous carbohydrate oxidation were not significantly influenced by diet. CONCLUSIONS: The pattern of carbohydrate utilization is involved in the modulation of hunger feelings. The greater suppression of hunger after the H diet than after the L diet may be helpful, at least over the short term, in individuals attempting to better control their food intake.
Advanced mapping of environmental data: Geostatistics, Machine Learning and Bayesian Maximum Entropy
Resumo:
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Resumo:
Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.
Resumo:
The American College of Surgeons Committee on Trauma's Advanced Trauma Life Support Course is currently taught in 50 countries. The 8th edition has been revised following broad input by the International ATLS subcommittee. Graded levels of evidence were used to evaluate and approve changes to the course content. New materials related to principles of disaster management have been added. ATLS is a common language teaching one safe way of initial trauma assessment and management.
Resumo:
The International Society of Urological Pathology Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens in Boston made recommendations regarding the standardization of pathology reporting of radical prostatectomy specimens. Issues relating to extraprostatic extension (pT3a disease), bladder neck invasion, lymphovascular invasion and the definition of pT4 were coordinated by working group 3. It was agreed that prostate cancer can be categorized as pT3a in the absence of adipose tissue involvement when cancer bulges beyond the contour of the gland or beyond the condensed smooth muscle of the prostate at posterior and posterolateral sites. Extraprostatic extension can also be identified anteriorly. It was agreed that the location of extraprostatic extension should be reported. Although there was consensus that the amount of extraprostatic extension should be quantitated, there was no agreement as to which method of quantitation should be employed. There was overwhelming consensus that microscopic urinary bladder neck invasion by carcinoma should be reported as stage pT3a and that lymphovascular invasion by carcinoma should be reported. It is recommended that these elements are considered in the development of practice guidelines and in the daily practice of urological surgical pathology.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
BACKGROUND: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line. PATIENTS AND METHODS: Patients were pooled from two phase II trials (SAKK19/05 and NTR528). For survival analyses, a log-rank test was used to determine if there was a statistically significant difference between groups. The hazard ratio (HR) of any separation was assessed using Cox proportional hazards models. RESULTS: 117 patients were analyzed. VeriStrat classified patients into two groups which had a statistically significant difference in duration of OS (p=0.0027, HR=0.480, 95% confidence interval: 0.294-0.784). CONCLUSION: VeriStrat has a prognostic role in patients with advanced, nonsquamous NSCLC treated with erlotinib and bevacizumab in the first line. Further work is needed to study the predictive role of VeriStrat for erlotinib and bevacizumab in chemotherapy-untreated patients.
Resumo:
In this paper the scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously-monotonous rocesses is entered. Conditions and statements of interpolation theorems concern he xed stochastic process, which diers from the classical results.
Resumo:
At the end of 2008 the Convention on Cluster Munitions (CCM) that outlawed almost all types of cluster munitions was signed. It was the product of the so-called Oslo process, which had been set up two years earlier as a reaction to the failure to add a new protocol banning cluster munitions to the Convention on Certain Conventional Weapons (CCW). The position of the EU in these two processes was ambivalent: on the one hand it belonged to the strongest proponents for a new protocol within the CCW, but on the other hand the member states were in general not able to act jointly in the Oslo Process. According to this working paper especially the aspect of national security and the related relationship to the United States influenced the stances of many member states and complicated the formation of a common European position. There were common normative values of the EU detected, which played a role in the CCW, but they were only secondary to other interests of the member states.
Resumo:
Taking advantage of homeostatic mechanisms to boost tumor-specific cellular immunity is raising increasing interest in the development of therapeutic strategies in the treatment of melanoma. Here, we have explored the potential of combining homeostatic proliferation, after transient immunosuppression, and antigenic stimulation of Melan-A/Mart-1 specific CD8 T-cells. In an effort to develop protocols that could be readily applicable to the clinic, we have designed a phase I clinical trial, involving lymphodepleting chemotherapy with Busulfan and Fludarabine, reinfusion of Melan-A specific CD8 T-cell containing peripheral blood mononuclear cells (exempt of growth factors), and Melan-A peptide vaccination. Six patients with advanced melanoma were enrolled in this outpatient regimen that demonstrated good feasibility combined with low toxicity. Consistent depletion of lymphocytes with persistent increased CD4/CD8 ratios was induced, although the proportion of circulating CD4 regulatory T-cells remained mostly unchanged. The study of the immune reconstitution period showed a steady recovery of whole T-cell numbers overtime. However, expansion of Melan-A specific CD8 T-cells, as measured in peripheral blood, was mostly inconsistent, accompanied with marginal phenotypic changes, despite vaccination with Melan-A/Mart-1 peptide. On the clinical level, 1 patient presented a partial but objective antitumor response following the beginning of the protocol, even though a direct effect of Busulfan/Fludarabine cannot be completely ruled out. Overall, these data provide further ground for the development of immunotherapeutic approaches to be both effective against melanoma and applicable in clinic.
Resumo:
Abstract Background. The broad spectrum of antitumor activity of both the oral platinum analogue satraplatin (S) and capecitabine (C), along with the advantage of their oral administration, prompted a clinical study aimed to define the maximum tolerated dose (MTD) of the combination. Patients and methods. Four dose levels of S (mg/m(2)/day) and C (mg/m(2)/day) were evaluated in adult patients with advanced solid tumors: 60/1650, 80/1650, 60/2000, 70/2000; a course consisted of 28 days with sequential administration of S (days 1-5) and C (days 8-21) followed by one week rest. Results. Thirty-seven patients were treated, 24 in the dose escalation and 13 in the expansion phase; at the MTD, defined at S 70/C 2000, two patients presented dose limiting toxicities: lack of recovery of neutropenia by day 42 and nausea with dose skip of C. Most frequent toxicities were nausea (57%), diarrhea (51%), neutropenia (46%), anorexia, fatigue, vomiting (38% each). Two partial responses were observed in platinum sensitive ovarian cancer and one in prostate cancer. Conclusion. At S 70/C 2000 the combination of sequential S and C is tolerated with manageable toxicities; its evaluation in platinum and fluorouracil sensitive tumor types is worthwhile because of the easier administration and lack of nephro- and neurotoxicity as compared to parent compounds.