994 resultados para Adherent junctions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were adapted to be systematically applied on the same data set of hemi-pelvises. A thorough experiment was designed and applied in order to highlight the advantages and disadvantages of each method. The methods were applied on the whole pelvis and on smaller fragments, thus producing a realistic set of clinical scenarios. Clinically relevant criteria are used for the assessment such as surface distances and the quality of the junctions between the donor and the receptor. The obtained results showed that both automatic methods outperform the manual counterpart. Additional advantages of the surface-based method are in the lower computational time requirements and the greater contact surfaces where the donor meets the recipient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junctions between neurons form the structural substrate for electrical synapses. Connexin 36 (Cx36, and its non-mammalian ortholog connexin 35) is the major neuronal gap junction protein in the central nervous system (CNS), and contributes to several important neuronal functions including neuronal synchronization, signal averaging, network oscillations, and motor learning. Connexin 36 is strongly expressed in the retina, where it is an obligatory component of the high-sensitivity rod photoreceptor pathway. A fundamental requirement of the retina is to adapt to broadly varying inputs in order to maintain a dynamic range of signaling output. Modulation of the strength of electrical coupling between networks of retinal neurons, including the Cx36-coupled AII amacrine cell in the primary rod circuit, is a hallmark of retinal luminance adaptation. However, very little is known about the mechanisms regulating dynamic modulation of Cx36-mediated coupling. The primary goal of this work was to understand how cellular signaling mechanisms regulate coupling through Cx36 gap junctions. We began by developing and characterizing phospho-specific antibodies against key regulatory phosphorylation sites on Cx36. Using these tools we showed that phosphorylation of Cx35 in fish models varies with light adaptation state, and is modulated by acute changes in background illumination. We next turned our focus to the well-studied and readily identifiable AII amacrine cell in mammalian retina. Using this model we showed that increased phosphorylation of Cx36 is directly related to increased coupling through these gap junctions, and that the dopamine-stimulated uncoupling of the AII network is mediated by dephosphorylation of Cx36 via protein kinase A-stimulated protein phosphatase 2A activity. We then showed that increased phosphorylation of Cx36 on the AII amacrine network is driven by depolarization of presynaptic ON-type bipolar cells as well as background light increments. This increase in phosphorylation is mediated by activation of extrasynaptic NMDA receptors associated with Cx36 gap junctions on AII amacrine cells and by Ca2+-calmodulin-dependent protein kinase II activation. Finally, these studies indicated that coupling is regulated locally at individual gap junction plaques. This work provides a framework for future study of regulation of Cx36-mediated coupling, in which increased phosphorylation of Cx36 indicates increased neuronal coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05). Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA), mefloquine, 2-aminoethyldiphenyl borate (2-APB), 18-alpha-glycyrrhetinic acid, 18-beta-glycyrrhetinic acid (18-beta-GA), retinoic acid, flufenamic acid, niflumic acid, and carbenoxolone. The efficacy of each drug was determined by measuring the diffusion coefficient for Neurobiotin (Mills & Massey, 1998). MFA, 18-beta-GA, 2-APB and mefloquine were the most effective antagonists, completely eliminating A-type horizontal cell coupling at a concentration of 200 muM. Niflumic acid, flufenamic acid, and carbenoxolone were less potent. Additionally, carbenoxolone was difficult to wash out and also may be harmful, as the retina became opaque and swollen. MFA, 18-beta-GA, 2-APB and mefloquine also blocked coupling in B-type horizontal cells and AII amacrine cells. Because these cell types express different connexins, this suggests that the antagonists were relatively non-selective across several different types of gap junction. It should be emphasized that MFA was water-soluble and its effects on dye coupling were easily reversible. In contrast, the other gap junction antagonists, except carbenoxolone, required DMSO to make stock solutions and were difficult to wash out of the preparation at the doses required to block coupling in A-type HCs. The combination of potency, water solubility and reversibility suggest that MFA may be a useful compound to manipulate gap junction coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this project was to determine if stability of specific antibody secretion improved after fusion of Epstein-Barr virus (EBV)-transformed lymphoblastoid cells with P3X63Ag8.653 murine myeloma cells. Production of human monoclonal antibodies by Epstein-Barr virus transformation and somatic cell fusion has been used by many laboratories, however the steps involved have not been fully optimized. B lymphocytes isolated from the peripheral blood of normal donors were enriched for Thomsen-Friedenreich (T) antigen-reactive cells by panning on asialoglycophorin. The EBV-transformed lymphoblastoid cell lines generated from asialoglycophorin-adherent B lymphocytes were treated in three different manners: (1) cloned and maintained in culture as monoclonal lymphoblastoid cell lines, (2) cloned and fused with murine myeloma cells or (3) fused shortly after transfomation without prior cloning. Cloned lymphoblastoid cell lines maintained in culture without fusion either died or lost specific antibody secretion within five months. Uncloned lymphoblastoid cells remained viable for up to three months but lost specific antibody secretion within two months probably due to overgrowth by nonspecific clones. In an attempt to increase longevity and to stabilize specific antibody secretion by these cells, the cloned lymphoblastoid cells were fused with murine myeloma cells. In nine of ten fusions no hybrids were recovered. As an alternate approach, uncloned lymphoblastoid cells secreting T antigen-specific antibody were hybridized with murine myeloma cells, hybrids secreting T antigen-specific antibody were recovered in six of seven fusions. Furthermore, T antigen-specific antibodies of high titer were secreted by the heterohybridoma clones for more than five months of continuous culture. These heterohybridoma cells secreted more immunoglobulin, produced greater titers of antibody and maintained specific antibody secretion longer than either monoclonal or polyclonal EBV-transformed lymphoblastoid cells. These studies have conclusively demonstrated that fusion of polyclonal lymphoblastoid cells secreting T antigen-specific antibody with murine myeloma cells results in prolongation of human monoclonal antibody production compared with unfused monoclonal or polyclonal lymphoblastoid cell lines. This procedure should be generally applicable for the production of stable human monoclonal antibody-secreting cells lines from peripheral blood lymphocytes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actinobacillus actinomycetemcomitans (Aa) is a gram-negative coccobacillus implicated as a major pathogen in juvenile periodontitis. The immunosuppressive activity of a sonic extract (designated 100SN) derived from Aa was investigated. 100SN suppressed spontaneous proliferation as well as proliferative response to the mitogens, PHA and PWM, of human peripheral blood mononuclear cells (PBMC). 100SN-induced suppression of PHA-stimulated proliferation was heat-sensitive, inactivated by pronase and trypsin, dose-dependent and non-cytotoxic. There were no significant changes in the CD4$\sp+$ or CD8$\sp+$ subsets of PBMC after 7-day incubation with 100SN. There was a trend toward increased levels of the CD4$\sp+$CD45R$\sp{\rm hi}$CDw29$\sp{\rm lo}$ (naive cells, associated with suppressor-inducer activity) and CD4$\sp+$CDw29$\sp{\rm hi}$CD45R$\sp{\rm lo}$ (memory cells, associated with helper-inducer activity) subsets. The target of 100SN appeared to be the non-adherent cells and suppression by 100SN could not be reversed by indomethacin (IDM), the cyclo-oxygenase inhibitor of prostaglandin (PG) synthesis. The mechanism of 100SN-induced suppression was studied in terms of inhibition involving IL-2-regulated T cell proliferation and the results point to the possibility that suppression occurred subsequent to IL-2 receptor binding.^ The suppressive activity observed could occur through multiple mechanisms including cell-cell; contact or release of soluble factors. Supernatants derived from 7-day cultures of PBMC and 100SN (designated CSN-A) were able to suppress proliferative response of PBMC to PHA without affecting cell viability. Analysis of CSN-A showed that it contained PGE2 and soluble IL-2 receptors. Suppression by CSN-A could be partially overcome by either IDM or exogenous IL-2. Significant suppression was also maintained when both IDM and exogenous IL-2 were added at the same time. These findings suggest that PGE2 and soluble IL-2 receptors contribute to the suppression observed but other suppressive cytokine(s) may be involved. Collectively, the data indicate that a factor derived from oral bacteria associated with juvenile periodontitis have profound effects on cellular immune responses, and that these effects may be partially mediated by secondary factors produced by the host in response to the bacteria. ^