951 resultados para Acesso Aberto


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder® 2010 version, which allowed the creation of executable file compatible with Microsoft Windows® operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM®. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Injectivity decline, which can be caused by particle retention, generally occurs during water injection or reinjection in oil fields. Several mechanisms, including straining, are responsible for particle retention and pore blocking causing formation damage and injectivity decline. Predicting formation damage and injectivity decline is essential in waterflooding projects. The Classic Model (CM), which incorporates filtration coefficients and formation damage functions, has been widely used to predict injectivity decline. However, various authors have reported significant discrepancies between Classical Model and experimental results, motivating the development of deep bed filtration models considering multiple particle retention mechanisms (Santos & Barros, 2010; SBM). In this dissertation, inverse problem solution was studied and a software for experimental data treatment was developed. Finally, experimental data were fitted using both the CM and SBM. The results showed that, depending on the formation damage function, the predictions for injectivity decline using CM and SBM models can be significantly different

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials