996 resultados para Acartia longiremis, c1, biomass as carbon
Resumo:
Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.
Resumo:
The meiobenthic community of Potter Cove (King George Island, west Antarctic Peninsula) was investigated, focusing on responses to summer/winter conditions in two study sites contrasting in terms of organic matter inputs. Meiofaunal densities were found to be higher in summer and lower in winter, although this result was not significantly related to the in situ availability of organic matter in each season. The combination of food quality and competition for food amongst higher trophic levels may have played a role in determining the standing stocks at the two sites. Meiobenthic winter abundances were sufficiently high to infer that energy sources were not limiting during winter, supporting observations from other studies for both shallow water and continental shelf Antarctic ecosystems. Recruitment within meiofaunal communities was coupled to the seasonal input of fresh detritus for harpacticoid copepods but not for nematodes, suggesting that species-specific life history or trophic features form an important element of the responses observed.