1000 resultados para Acartia clausi, c3, mass
Resumo:
OBJECTIVE: To explore the association between patients' body mass index (BMI) and their experiences with inpatient care. DESIGN: Cross-sectional. Mail survey. SETTING: University Hospital of Geneva. PARTICIPANTS: Questionnaires were mailed to 2385 eligible adult patients, 6 weeks after discharge (response rate = 69%). MAIN OUTCOME MEASURES: Patients' experiences with care were measured using the Picker inpatient survey questionnaire. BMI was calculated using self-reported height and weight. Main dependent variables were the global Picker patient experience (PPE-15) score and nine dimension-specific problem scores, scored from 0 (no reported problems) to 1 (all items coded as problems). We used linear regressions, adjusting for age, gender, education, subjective health, smoking and hospitalization, to assess the association between patients' BMI and their experiences with inpatient care. RESULTS: Of the patients, 4.8% were underweight, 50.8% had normal weight, 30.3% were overweight and 14.1% were obese. Adjusted analysis shows that compared with normal weight, obesity was significantly associated with fewer problematic items in the surgery-related information domain, and being underweight or overweight was associated with more problematic items in the involvement of family/friends domain. The global PPE-15 score was significantly higher (more problems) for underweight patients. CONCLUSIONS: Underweight patients, but not obese patients, reported more problems during hospitalization.
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Resumo:
Interaction between CD40, a member of the tumor necrosis factor receptor (TNFR) superfamily, and its ligand CD40L, a 39-kDa glycoprotein, is essential for the development of humoral and cellular immune responses. Selective blockade or activation of this pathway provides the ground for the development of new treatments against immunologically based diseases and malignancies. Like other members of the TNF superfamily, CD40L monomers self-assemble around a threefold symmetry axis to form noncovalent homotrimers that can each bind three receptor molecules. Here, we report on the structure-based design of small synthetic molecules with C3 symmetry that can mimic CD40L homotrimers. These molecules interact with CD40, compete with the binding of CD40L to CD40, and reproduce, to a certain extent, the functional properties of the much larger homotrimeric soluble CD40L. Architectures based on rigid C3-symmetric cores may thus represent a general approach to mimicking homotrimers of the TNF superfamily.
Resumo:
This study investigated fatigue-induced changes in spring-mass model characteristics during repeated running sprints. Sixteen active subjects performed 12 × 40 m sprints interspersed with 30 s of passive recovery. Vertical and anterior-posterior ground reaction forces were measured at 5-10 m and 30-35 m and used to determine spring-mass model characteristics. Contact (P < 0.001), flight (P < 0.05) and swing times (P < 0.001) together with braking, push-off and total stride durations (P < 0.001) lengthened across repetitions. Stride frequency (P < 0.001) and push-off forces (P < 0.05) decreased with fatigue, whereas stride length (P = 0.06), braking (P = 0.08) and peak vertical forces (P = 0.17) changes approached significance. Center of mass vertical displacement (P < 0.001) but not leg compression (P > 0.05) increased with time. As a result, vertical stiffness decreased (P < 0.001) from the first to the last repetition, whereas leg stiffness changes across sprint trials were not significant (P > 0.05). Changes in vertical stiffness were correlated (r > 0.7; P < 0.001) with changes in stride frequency. When compared to 5-10 m, most of ground reaction force-related parameters were higher (P < 0.05) at 30-35 m, whereas contact time, stride frequency, vertical and leg stiffness were lower (P < 0.05). Vertical stiffness deteriorates when 40 m run-based sprints are repeated, which alters impact parameters. Maintaining faster stride frequencies through retaining higher vertical stiffness is a prerequisite to improve performance during repeated sprinting.
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K(+) increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.
Resumo:
Hazard mapping in mountainous areas at the regional scale has greatly changed since the 1990s thanks to improved digital elevation models (DEM). It is now possible to model slope mass movement and floods with a high level of detail in order to improve geomorphologic mapping. We present examples of regional multi-hazard susceptibility mapping through two Swiss case studies, including landslides, rockfall, debris flows, snow avalanches and floods, in addition to several original methods and software tools. The aim of these recent developments is to take advantage of the availability of high resolution DEM (HRDEM) for better mass movement modeling. Our results indicate a good correspondence between inventories of hazardous zones based on historical events and model predictions. This paper demonstrates that by adapting tools and methods issued from modern technologies, it is possible to obtain reliable documents for land planning purposes over large areas.
Resumo:
To explore the discriminatory power of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for detecting subtle differences in isogenic isolates, we tested isogenic strains of Staphylococcus aureus differing in their expression of resistance to methicillin or teicoplanin. More important changes in MALDI-TOF MS spectra were found with strains differing in methicillin than in teicoplanin resistance. In comparison, very minor or no changes were recorded in pulsed-field gel electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains, respectively. MALDI-TOF MS might be useful to detect subtle strain-specific differences in ionizable components released from bacterial surfaces and not from their peptidoglycan network.
Resumo:
The problem of obesity is alarming public health authorities around the world. Therefore, it is important to study its determinants. In this paper we explore the empirical relationship between household income and body mass index (BMI) in nine European Union countries. Our findings suggest that the association is negative for women, but we find no statistically significant relationship for men. However, we show that the different relationship for men and women appears to be driven by the negative relationship for women between BMI and individual income from work. We tentatively conclude that the negative relationship between household income and BMI for women may simply be capturing the wage penalty that obese women suffer in the labor market.
Resumo:
Pearson correlation coefficients were applied for the objective comparison of 30 black gel pen inks analysed by laser desorption ionization mass spectrometry (LDI-MS). The mass spectra were obtained for ink lines directly on paper using positive and negative ion modes at several laser intensities. This methodology has the advantage of taking into account the reproducibility of the results as well as the variability between spectra of different pens. A differentiation threshold could thus be selected in order to avoid the risk of false differentiation. Combining results from positive and negative mode yielded a discriminating power up to 85%, which was better than the one obtained previously with other optical comparison methodologies. The technique also allowed discriminating between pens from the same brand.
Resumo:
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.