970 resultados para ARTERIAL-PRESSURE
Resumo:
Objective. Loud noises in neonatal intensive care units (NICUs) may impede growth and development for extremely low birthweight (ELBW, < 1000 grams) newborns. The objective of this study was to measure the association between NICU sound levels and ELBW neonates' arterial blood pressure to determine whether these newborns experience noise-induced stress. ^ Methods. Noise and arterial blood pressure recordings were collected for 9 ELBW neonates during the first week of life. Sound levels were measured inside the incubator, and each subject's arterial blood pressures were simultaneously recorded for 15 minutes (at 1 sec intervals). Time series cross-correlation functions were calculated for NICU noise and mean arterial blood pressure (MABP) recordings for each subject. The grand mean noise-MABP cross-correlation was calculated for all subjects and for lower and higher birthweight groups for comparison. ^ Results. The grand mean noise-MABP cross-correlation for all subjects was mostly negative (through 300 sec lag time) and nearly reached significance at the 95% level at 111 sec lag (mean r = -0.062). Lower birthweight newborns (454-709 g) experienced significant decreases in blood pressure with increasing NICU noise after 145 sec lag (peak r = -0.074). Higher birthweight newborns had an immediate negative correlation with NICU sound levels (at 3 sec lag, r = -0.071), but arterial blood pressures increased to a positive correlation with noise levels at 197 sec lag (r = 0.075). ^ Conclusions. ELBW newborns' arterial blood pressure was influenced by NICU noise levels during the first week of life. Lower birthweight newborns may have experienced an orienting reflex to NICU sounds. Higher birthweight newborns experienced an immediate orienting reflex to increasing sound levels, but arterial blood pressure increased approximately 3 minutes after increases in noise levels. Increases in arterial blood pressure following increased NICU sound levels may result from a stress response to noise. ^
Resumo:
Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que realizan las simulaciones y los médicos que operan en el quirófano. Por otra parte, los métodos de cálculo más simplificados reducen el tiempo de cálculo pero pueden proporcionar resultados no realistas. El objetivo de esta tesis es combinar los conceptos de autorregulación e impedancia del sistema circulatorio, la interacción flujo sanguíneo-pared arterial y modelos geométricos idealizados tridimensionales de las arterias pero sin pérdida de realismo, con objeto de proponer una metodología de simulación que proporcione resultados correctos y completos, con tiempos de cálculo moderados. En las simulaciones numéricas, las condiciones de contorno basadas en historias de presión presentan inconvenientes por ser difícil conocerlas con detalle, y porque los resultados son muy sensibles ante pequeñas variaciones de dichas historias. La metodología propuesta se basa en los conceptos de autorregulación, para imponer la demanda de flujo aguas abajo del modelo en el ciclo cardiaco, y la impedancia, para representar el efecto que ejerce el flujo en el resto del sistema circulatorio sobre las arterias modeladas. De este modo las historias de presión en el contorno son resultados del cálculo, que se obtienen de manera iterativa. El método propuesto se aplica en una geometría idealizada del arco aórtico sin patologías y en otra geometría correspondiente a una disección Stanford de tipo A, considerando la interacción del flujo pulsátil con las paredes arteriales. El efecto de los tejidos circundantes también se incorpora en los modelos. También se hacen aplicaciones considerando la interacción en una geometría especifica de un paciente anciano que proviene de una tomografía computarizada. Finalmente se analiza una disección Stanford tipo B con tres modelos que incluyen la fenestración del saco. Clinicians demand fast and reliable numerical results of cardiovascular biomechanic simulations for their urgent pre-surgery decissions. Researchers during many years have work on different numerical methods in order to attract the clinicians' confidence to their colorful contours. Though precise but expensive and time-consuming methodologies create a gap between numerical biomechanics and hospital personnel. On the other hand, simulation simplifications with the aim of reduction in computational time may cause in production of unrealistic outcomes. The main objective of the current investigation is to combine ideas such as autoregulation, impedance, fluid-solid interaction and idealized geometries in order to propose a computationally cheap methodology without excessive or unrealistic simplifications. The pressure boundary conditions are critical and polemic in numerical simulations of cardiovascular system, in which a specific arterial site is of interest and the rest of the netwrok is neglected but represented by a boundary condition. The proposed methodology is a pressure boundary condition which takes advantage of numerical simplicity of application of an imposed pressure boundary condition on outlets, while it includes more sophisticated concepts such as autoregulation and impedance to gain more realistic results. Incorporation of autoregulation and impedance converts the pressure boundary conditions to an active and dynamic boundary conditions, receiving feedback from the results during the numerical calculations and comparing them with the physiological requirements. On the other hand, the impedance boundary condition defines the shapes of the pressure history curves applied at outlets. The applications of the proposed method are seen on idealized geometry of the healthy arotic arch as well as idealized Stanford type A dissection, considering the interaction of the arterial walls with the pulsatile blood flow. The effect of surrounding tissues is incorporated and studied in the models. The simulations continue with FSI analysis of a patient-specific CT scanned geometry of an old individual. Finally, inspiring of the statistic results of mortality rates in Stanford type B dissection, three models of fenestrated dissection sac is studied and discussed. Applying the developed boundary condition, an alternative hypothesis is proposed by the author with respect to the decrease in mortality rates in patients with fenestrations.
Resumo:
Central arterial waveforms and related indices of large artery properties can be determined with relative ease. This would make them an attractive adjunct in the risk stratification for cardiovascular disease. Although they have been associated with some classical risk factors and the presence of coronary disease, their prospective value in predicting cardiovascular outcomes is unknown. The present study determined the relative predictive value for cardiovascular disease-free survival of large artery properties as compared with noninvasive brachial blood pressure alone in a population of elderly female hypertensive subjects. We measured systemic arterial compliance, central systolic pressure, and carotid augmentation index in a subset of female participants in the Second Australian National Blood Pressure Study ( untreated blood pressure 169/88 +/- 12/ 8 mm Hg). There were a total of 53 defined events during a median of 4.1 years of follow-up in 484 women with complete measurements. Although baseline blood pressures at the brachial artery predicted cardiovascular disease-free survival ( hazard ratio [HR], 2.3; 95% CI, 1.3 to 4.1 for pulse pressure >= 81 versus < 81 mm Hg; P = 0.01), no such relation was found for carotid augmentation index ( HR, 0.80; 95% CI, 0.44 to 1.44; P value not significant) or systemic arterial compliance ( HR, 1.25; 95% CI, 0.72 to 2.16; P value not significant). Blood pressure, but not noninvasively measured central arterial waveforms, predict outcome in the older female hypertensive patient. Thus, blood pressure measurement alone is superior to measurement of arterial waveforms in predicting outcome in this group.
Resumo:
Background Diabetes is a global epidemic. Cardiovascular disease (CVD) is one of the most prevalent consequences of diabetes. Nutrition is considered a modifiable risk factor for CVD, particularly for individuals with diabetes; albeit, there is little consensus on the role of carbohydrates, proteins and fats for arterial health for persons with or without diabetes. In this study, we examined the association of macronutrients with arterial pulse pressure (APP), a surrogate measure of arterial health by diabetes status and race. Methods Participants were 892 Mexican Americans (MA), 1059 Black, non-Hispanics (BNH) and 2473 White, non-Hispanics (WNH) with and without diabetes of a weighted sample from the National Nutrition and Health Examination Survey (NHANES) 2007-2008. The cross-sectional analysis was performed with IBM-SPSS version 18 with the complex sample analysis module. The two-year sample weight for the sub-sample with laboratory values was applied to reduce bias and approximate a nationally, representative sample. Arterial stiffness was assessed by arterial pulse pressure (APP). Results APP was higher for MA [B = 0.063 (95% CI 0.015 to 0.111), p = 0.013] and BNH [B = 0.044 (95% CI 0.006 to 0.082), p = 0.018] than WNH, controlling for diabetes, age, gender, body mass index (BMI), fiber intake, energy intake (Kcal) and smoking. A two-way interaction of diabetes by carbohydrate intake (grams) was inversely associated with APP [B = -1.18 (95% CI -0.178 to -0.058), p = 0.001], controlling for race, age, gender, BMI, Kcal and smoking. BNH with diabetes who consumed more mono-unsaturated fatty acids (MUFA) than WNH with diabetes had lower APP [B = -0.112 (95%CI-0.179 to -0.045), p = 0.003] adjusting for saturated fatty acids, Kcal, age, gender, BMI and smoking. Conclusion Higher MUFA and carbohydrate intake for persons with diabetes reflecting lower APP may be due to replacement of saturated fats with CHO and MUFA. The associations of APP with diabetes, race and dietary intake need to be confirmed with intervention and prospective studies. Confirmation of these results would suggest that dietary interventions for minorities with diabetes may improve arterial health.
Resumo:
Background: Arterial pulse pressure, the difference between systolic and diastolic blood pressure, has been used as an indicator (surrogate measure) of arterial stiffness. High arterial pulse pressure (> 40) has been associated with increased cardiovascular disease and mortality. Several clinical trials have reported that the proportion of calories from carbohydrate has an effect on blood pressure. The primary objective of this study was to assess arterial pulse pressure and its association with carbohydrate quantity and quality (glycemic load) with diabetes status for a Cuban American population. Methods: A single point analysis included 367 participants. There was complete data for 365 (190 with and 175 without type 2 diabetes). The study was conducted in the investigator’s laboratory located in Miami, Florida. Demographic, dietary, anthropometric and laboratory data were collected. Arterial pulse pressure was calculated by the formula systolic minus the diastolic blood pressure. Glycemic load, fructose, sucrose, percent of average daily calories from carbohydrate, fat and protein, grams of fiber and micronutrient intakes were calculated from a validated food frequency questionnaire. Results: The mean arterial pulse pressure was significantly higher in participants with (52.9 ± 12.4) than without (48.6 ± 13.4) type 2 diabetes. The odds of persons with diabetes having high arterial pulse pressure (>40) was 1.85 (95% CI =1.09, 3.13); p=0.023. For persons with type 2 diabetes higher glycemic load was associated with lower arterial pulse pressure. Conclusions: Arterial pulse pressure and diet are modifiable risk factors of cardiovascular disease. Arterial pulse pressure may be associated with carbohydrate intake differently considering diabetes status. Results may be due to individuals with diabetes following dietary recommendations. The findings of this study suggest clinicians take into consideration how medical condition, ethnicity and diet are associated with arterial pulse pressure before developing a medical nutrition therapy plan in collaboration with the client.
Resumo:
This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Increased levels of inflammatory biomarkers such as interleukin-6 (IL-6), 10 (IL-10), 1β (IL-1β), tumor necrosis factor-α (TNF-α) high-sensitivity C-reactive protein (hs-CRP) are associated with arterial stiffness in hypertension. Indeed, resistant hypertension (RHTN) leads to unfavorable prognosis attributed to poor blood pressure (BP) control and target organ damage. This study evaluated the potential impact of inflammatory biomarkers on arterial stiffness in RHTN. In this cross-sectional study, 32 RHTN, 20 mild hypertensive (HTN) and 20 normotensive (NT) patients were subjected to office BP and arterial stiffness measurements assessed by pulse wave velocity (PWV). Inflammatory biomarkers were measured in plasma samples. PWV was increased in RHTN compared with HTN and NT (p < 0.05). TNF-α levels were significantly higher in RHTN and HTN than NT patients. No differences in IL-6 levels were observed. RHTN patients had a higher frequency of subjects with increased levels of IL-10 and IL-1β compared with HTN and NT patients. Finally, IL-1β was independently associated with PWV (p < 0.001; R(2) = 0.5; β = 0.077). RHTN subjects have higher levels of inflammatory cytokines (TNF-α, IL-1β and IL-10) as well as increased arterial stiffness, and detectable IL-1β levels are associated arterial stiffness. These findings suggest that inflammation plays a possible role in the pathophysiology of RHTN.