996 resultados para AQUEOUS BIPHASIC CATALYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block copolymer systems with hydrogen bonding interactions have received relatively little attention. Recently, we have investigated the self-assembly and phase separation in such block copolymer systems with an attempt to elucidate the role of hydrogen bonding interactions both theoretically and experimentally [1-4]. In A-b-B/C diblock copolymer/homopolymer systems, the phase behavior was theoretically analyzed according to the random phase approximation and correlated with hydrogen bonding interactions in terms of the difference in inter-association constants (K). To examine how the hydrogen bonding determines the self-assembly and morphological transitions in these systems, we have introduced the K values as a new variable into the phase diagram which we established for the first time (Fig. 1). Multiple vesicular morphologies were formed in aqueous solution of A-b-B/A-b-C diblock copolymer complexes of PS-b-PAA and PS-b-PEO. Interconnected compound vesicles (ICCVs) were observed for the first time as a new morphology (Fig. 2), along with other aggregated nanostructures including vesicles, multilamellar vesicles, thick-walled vesicles and irregular aggregates. Complexation of two amphiphilic diblock copolymers provides a viable approach to vesicles in aqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary study showed that the inhibitor lanthanum 4-hydroxy cinnamate ((La4OHcin)3) at a concentration of 400 ppm prevented the hydrogen embrittlement (HE) of SAE 4340 steel tensile specimens when tested under slow strain rate conditions in a 0.01M NaCl. In the presence of the inhibitor, a complex film formed on the surface of specimens during the slow strain rate test (SSRT), and no corrosion pits were detected. Electrochemical polarization studies indicated that the La(4OHcin)3 acted as an anodic inhibitor in the NaCl solution. This article also discusses the mechanism of HE inhibition by La(4OHcin)3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first surface force measurements under electrochemical potential control between a metal and a ceramic surface across a liquid medium (water) are reported. Our experiments also investigate and reveal how increasing levels of surface roughness and dissimilarity between the potentials of the interacting surfaces influence the strength and range of electric double layer, van der Waals, hydration, and steric forces and how this contributes to deviations from DLVO theory at small distances within aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide (GO) possesses unusual electronic and mechanical properties, including the ability to stabilize graphene radicals (GRs). However, controlled generation of GRs remains a challenge for applications requiring large-scale production. In this study, we demonstrate controlled production of GRs by UVB irradiation of GO solutions. Electron paramagnetic resonance spectroscopy of GO solutions revealed a dose-dependent exponential growth in radical production as a function of UVB exposure time. The GRs were air-stable over a long period, both in the solution state and in freeze-dried powders, suggesting they are graphene-based phenalenyl-like radicals. The redox activity of GRs was demonstrated by their ability to oxidize the chromophore 3,5,3?,5?- tetramethylbenzidine, with oxidation capacity of GO increasing with GR content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solo exhibition of paintings