955 resultados para APPLIED LOAD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study. Nevertheless, the requirement for an increase of pressure, temperature and stratification in order to achieve auto-ignition time scales small enough for combustion in the engine was clear, using pump gasoline. Copyright © 2009 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one-dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross-correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross-correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loop under steady-state condition. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims at accounting for swirling mean flow effects on rotor trailing-edge noise. Indeed, the mean flow in between the rotor and the stator of the fan or of a compressor stage is highly swirling. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces and of Goldstein's acoustic analogy in a circular duct with uniform mean flow to a swirling mean flow in an annular duct is introduced. It is first applied to tonal noise. In most cases, the swirl modifies the pressure distribution downstream of the fan. In several configurations, when the swirl is rather close to a solid body swirl, it is often sufficient to apply a simple Doppler effect correction when predicting the duct modes in uniform mean flow in order to predict accurately the noise radiated with swirl. However, in other realistic configurations, the swirling mean-flow effect cannot be addressed using this simple Doppler effect correction. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling and sheared mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has an effect. In some cases the a simple Doppler effect may address it, but, in other realistic configurations our acoustic analogy with swirl is needed. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.