983 resultados para 840


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submarine gas hydrates are a major global reservoir of the potent greenhouse gas methane. Since current assessments of worldwide hydrate-bound carbon vary by one order of magnitude, new technical efforts are required for improved and accurate hydrate quantifications. Here we present hydrate abundances determined for surface sediments at the high-flux Batumi seep area in the southeastern Black Sea at 840 m water depth using state-of-the art autoclave technology. Pressure sediment cores of up to 2.65 m in length were recovered with an autoclave piston corer backed by conventional gravity cores. Quantitative core degassing yielded volumetric gas/bulk sediment ratios of up to 20.3 proving hydrate presence. The cores represented late glacial to Holocene hemipelagic sediments with the shallowest hydrates found at 90 cmbsf. Calculated methane concentrations in the different cores surpassed methane equilibrium concentrations in the two lowermost lithological Black Sea units sampled. The results indicated hydrate fractions of 5.2% of pore volume in the sapropelic Unit 2 and mean values of 21% pore volume in the lacustrine Unit 3. We calculate that the studied area of ~ 0.5 km**2 currently contains about 11.3 kt of methane bound in shallow hydrates. Episodic detachment and rafting of such hydrates is suggested by a rugged seafloor topography along with variable thicknesses in lithologies. We propose that sealing by hydrate precipitation in coarse-grained deposits and gas accumulation beneath induces detachment of hydrate/sediment chunks. Floating hydrates will rapidly transport methane into shallower waters and potentially to the sea-atmosphere boundary. In contrast, persistent in situ dissociation of shallow hydrates appears unlikely in the near future as deep water warming by about 1.6 °C and/or decrease in hydrostatic pressure corresponding to a sea level drop of about 130 m would be required. Because hydrate detachment should be primarily controlled by internal factors in this area and in similar hydrated settings, it serves as source of methane in shallow waters and the atmosphere which is mainly decoupled from external forcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, modernized shipborne procedures are presented to collect and process above-water radiometry for remote sensing applications. A setup of five radiometers and a bidirectional camera system, which provides panoramic sea surface and sky images, is proposed for the collection of high-resolution radiometric quantities. Images from the camera system can be used to determine sky state and potential glint, whitecaps, or foam contamination. A peak in the observed remote sensing reflectance RRS spectra between 750-780 nm was typically found in spectra with relatively high surface reflected glint (SRG), which suggests this waveband could be a useful SRG indicator. Simplified steps for computing uncertainties in SRG corrected RRS are proposed and discussed. The potential of utilizing "unweighted multimodel averaging," which is the average of four or more common SRG correction models, is examined to determine the best approximation RRS. This best approximation RRS provides an estimate of RRS based on various SRG correction models established using radiative transfer simulations and field investigations. Applying the average RRS provides a measure of the inherent uncertainties or biases that result from a user subjectively choosing any one SRG correction model. Comparisons between inherent and apparent optical property derived observations were used to assess the robustness of the SRG multimodel averaging ap- proach. Correlations among the standard SRG models were completed to determine the degree of association or similarities between the SRG models. Results suggest that the choice of glint models strongly affects derived RRS values and can also influence the blue to green band ratios used for modeling biogeochemical parameters such as for chlorophyll a. The objective here is to present a uniform and traceable methodology for determining ship- borne RRS measurements and its associated errors due to glint correction and to ensure the direct comparability of these measurements in future investigations. We encourage the ocean color community to publish radiometric field measurements with matching and complete metadata in open access repositories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo based radiative transfer model has been developed for calculating the availability of solar radiation within the top 100 m of the ocean. The model is optimized for simulations of spatial high resolution downwelling irradiance Ed fluctuations that arise from the lensing effect of waves at the water surface. In a first step the accuracy of simulation results has been verified by measurements of the oceanic underwater light field and through intercomparison with an established radiative transfer model. Secondly the potential depth-impact of nonlinear shaped single waves, from capillary to swell waves, is assessed by considering the most favorable conditions for light focusing, i.e. monochromatic light at 490 nm, very clear oceanic water with a low chlorophyll a content of 0.1 mg/m**3 and high sun elevation. Finally light fields below irregular wave profiles accounting for realistic sea states were simulated. Our simulation results suggest that under open ocean conditions light flashes with 50% irradiance enhancements can appear down to 35 m depth, and light variability in the range of ±10% compared to the mean Ed is still possible in 100 m depth.