988 resultados para 789


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La TiO2 è uno dei materiali più studiati degli ultimi decenni. I motivi sono da ricercarsi nelle sue numerose applicazioni, possibili in molti campi come dispositivi fotovoltaici, depurazione da agenti inquinanti o filtraggio di raggi UV. Per le celle elettrochimiche in particolare, il biossido di titanio offre molti vantaggi, ma non è privo di ostacoli. Il limite principale è lo scarso assorbimento dello spettro visibile, dovuto all’energy gap elevato (circa 3.2 eV). La ricerca da diversi anni si concentra sul tentativo di aumentare l’assorbimento di luce solare: promettenti sono i risultati raggiunti grazie alla forma nanoparticellare della TiO2, che presenta proprietà diverse dal materiale bulk. Una delle strategie più studiate riguarda il drogaggio tramite impurità, che dovrebbero aumentare le prestazioni di assorbimento del materiale. Gli elementi ritenuti migliori a questo scopo sono il vanadio e l’azoto, che possono essere usati sia singolarmente che in co-doping. In questo lavoro abbiamo realizzato la crescita di nanoparticelle di V-TiO2, tramite Inert Gas Condensation. La morfologia e la struttura atomica sono state analizzate attraverso microscopia a trasmissione, analizzandone la mappe tramite image processing. Successivamente abbiamo studiato le proprietà di assorbimento ottico dei campioni, nello spettro visibile e nel vicino ultravioletto, attraverso il metodo della riflettanza diffusa, determinando poi il bandgap tramite Tauc Plot. L’esperimento centrale di questo lavoro di tesi è stato condotto sulla beamline ID26 dell’European Synchrotron Radiation Facility, a Grenoble. Lì, abbiamo effettuato misure XANES, allo scopo di studiare gli stati fotoeccitati del materiale. L’eccitazione avveniva mediante laser con lunghezza d’onda di 532 nm. Tramite gli spettri, abbiamo analizzato la struttura locale e lo stato di ossidazione del vanadio. Le variazioni indotta dal laser hanno permesso di capire il trasferimento di carica e determinare la vita media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchanges between the North Atlantic and the Arctic Ocean result in the most dramatic water mass conversions in the World Ocean: warm and saline Atlantic waters, flowing through the Nordic Seas into the Arctic Ocean, are modified by cooling, freezing and melting to become shallow fresh waters, ice and saline deep waters. The outflow from the Nordic Seas to the south provides the initial driving of the global thermohaline circulation cell. Knowledge of these fluxes and understanding of the modification processes is a major prerequisite for the quantification of the rate of overturning within the large circulation cells of the Arctic and the Atlantic Oceans, and is also a basic requirement for understanding the role of these ocean areas in climate variability on interannual to decadal time scales. The Fram Strait represents the only deep connection between the Arctic Ocean and the Nordic Seas. Just as the freshwater transport from the Arctic Ocean is of major influence on convection in the Nordic Seas and further south, the transport of warm and saline Atlantic water affects the water mass characteristics in the Arctic Ocean which has consequences for the internal circulation and possibly influences also ice and atmosphere. The West Spitsbergen Current carrying Atlantic Water northward. The East Greenland Current, carrying water from the Arctic Ocean southwards has a concentrated core above the continental slope. It is our aim to measure the oceanic fluxes through Fram Strait and to determine their variability in seasonal to decadal time scales. 53 CTD profiles were taken at 51 stations. Two CTD systems from Sea-Bird Electronics Inc SBE911+ were used. Mainly SN 561 with duplicate T and C sensors (temperature sensors SBE3, SN 2685 and 2678, conductivity sensors SBE4, SN 2325 and 2618 and pressure sensor Digiquartz 410K-105 SN 75659) was in service. For the control of the temperature sensors a SBE35 RT digital reversing thermometer, SN 27 was applied. The CTD was connected to a SBE32 Carousel Water Sampler, SN 273 (24 12-liter bottles). For 3 CTD-Stations (726-3, 727-1, 728-1) the Sea-Bird 911+ probe SN 485 was used with temperature sensor SBE3 SN 2460, conductivity sensor SBE4 SN 2054, pressure sensor Digiquartz 410K SN 68997 and the SBE32 Carousel Water Sampler SN 202. Additionally Benthos Altimeters Model 2110-2, SN 189 and SN 208 and Wetlabs C-Star Transmissiometers SN 403 and SN 267 were mounted on the carousels. During the cruise a total number of 184 water samples were analysed with a Guildline Autosal 8400B salinometer, and IAPSO standard seawater batch number P141, K=0.99993. 20 salinity samples were brought back to AWI for onshore analysis. The CTD sensors were calibrated before and after the cruise by Sea-Bird Electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical barrier zones play an important role in determining various physical systems and characteristics of oceans, e.g. hydrodynamics, salinity, temperature and light. In the book each of more than 30 barrier zones are illustrated and defined by physical, chemical and biological parameters. Among the topics discussed are processes of inflow, transformation and precipitation of the sedimentary layer of the open oceans and more restricted areas such as the Baltic, Black and Mediterranean Seas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the austral summer expedition PS81, ANT-XXIX/3 with the German research ice breaker Polarstern in 2013, research was carried out to investigate the role of environmental factors on the distribution of benthic communities and marine mammal and krill densities around the northern tip of the Antarctic Peninsula. For these studies collated in this special issue and studies in this area, we present a collection of environmental parameters with probable influence on the marine ecosystems around the Antarctic Peninsula.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the SINOPS project, an optimal state of the art simulation of the marine silicon cycle is attempted employing a biogeochemical ocean general circulation model (BOGCM) through three particular time steps relevant for global (paleo-) climate. In order to tune the model optimally, results of the simulations are compared to a comprehensive data set of 'real' observations. SINOPS' scientific data management ensures that data structure becomes homogeneous throughout the project. Practical work routine comprises systematic progress from data acquisition, through preparation, processing, quality check and archiving, up to the presentation of data to the scientific community. Meta-information and analytical data are mapped by an n-dimensional catalogue in order to itemize the analytical value and to serve as an unambiguous identifier. In practice, data management is carried out by means of the online-accessible information system PANGAEA, which offers a tool set comprising a data warehouse, Graphical Information System (GIS), 2-D plot, cross-section plot, etc. and whose multidimensional data model promotes scientific data mining. Besides scientific and technical aspects, this alliance between scientific project team and data management crew serves to integrate the participants and allows them to gain mutual respect and appreciation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: