952 resultados para 300301 Plant Improvement (Selection, Breeding and Genetic Engineering)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human immunodeficiency virus (HIV) kills more people worldwide than any other infectious disease. Approximately 42 million people, mostly in Africa and Asia, are currently infected with HIV (Figure 3.1), and 5 million new infections occur every year (AIDS Epidemic Update, 2002). It is estimated that 22 milIion people have died since the first clinical evidence of AIDS (acquired immunodeficiency syndrome) emerged in 1981 ('Mobilization for Microbicides' ~ The Rockfeller Foundation). HIV is generally transmitted in one of three ways: through unprotected sexual intercourse, blood-to-blood contact, and mother-to-child transmission. Once the virus has entered the body, it invades the cells of the immune system and initiates the production of new virus particles with concomitant destruction of the immune cells. As the number of immune cells in the body slowly declines, weight loss, debilitation, and eventually death occur due to opportunistic infections or cancers. Although AIDS is presently incurable, highly active antiretroviral therapy (HAART), where a cocktail of potent antiretroviral drugs are administered daily to HIV-positive patients to control the viral load, has resulted in dramatic reductions in HIV-related morbidity and mortality in the developed world

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decades, social-ecological systems (SESs) worldwide have undergone dramatic transformations with often detrimental consequences for livelihoods. Although resilience thinking offers promising conceptual frameworks to understand SES transformations, empirical resilience assessments of real-world SESs are still rare because SES complexity requires integrating knowledge, theories, and approaches from different disciplines. Taking up this challenge, we empirically assess the resilience of a South African pastoral SES to drought using various methods from natural and social sciences. In the ecological subsystem, we analyze rangelands’ ability to buffer drought effects on forage provision, using soil and vegetation indicators. In the social subsystem, we assess households’ and communities’ capacities to mitigate drought effects, applying agronomic and institutional indicators and benchmarking against practices and institutions in traditional pastoral SESs. Our results indicate that a decoupling of livelihoods from livestock-generated income was initiated by government interventions in the 1930s. In the post-apartheid phase, minimum-input strategies of herd management were adopted, leading to a recovery of rangeland vegetation due to unintentionally reduced stocking densities. Because current livelihood security is mainly based on external monetary resources (pensions, child grants, and disability grants), household resilience to drought is higher than in historical phases. Our study is one of the first to use a truly multidisciplinary resilience assessment. Conflicting results from partial assessments underline that measuring narrow indicator sets may impede a deeper understanding of SES transformations. The results also imply that the resilience of contemporary, open SESs cannot be explained by an inward-looking approach because essential connections and drivers at other scales have become relevant in the globalized world. Our study thus has helped to identify pitfalls in empirical resilience assessment and to improve the conceptualization of SES dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.