1000 resultados para 249999 Physical Sciences not elsewhere classified
Resumo:
We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.
Resumo:
We describe the production of BECs on a new type of atom chip based on silver foil. Our atom chip is fabricated with thick wires capable of carrying currents of several amperes without overheating. The silver surface is highly reflective to light resonant with optical transitions used for Rb. The pattern on the chip consists of two parallel Z-trap wires, capable of producing two-wire guide, and two additional endcap wires for varying the axial confinement. Condensates are produced in magnetic microtraps formed within 1 mm of surface of the chip. We have observed the fragmentation of cold atom clouds when brought close to the chip surface. This results from a perturbed trapping potential caused by nanometer deviations of the current path through the wires on the chip. We present results of fragmentation of cold clouds at distances below 100 µm from the wires and investigate the origin of the deviating current. The fragmentation has different characteristics to those seen with copper conductors. The dynamics of atoms in these microtraps is also investigated. ©2005 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Resumo:
We report here on the use of optical tweezers in the growth and manipulation of protein and inorganic crystals. Sodium chloride and hen egg-white lysozyme crystals were grown in a batch process, and then seeds from the solution were introduced into the optical tweezers. The regular and controllable shape and the known optical birefringence in these structures allowed a detailed study of the orientation effects in the beam due to both polarization and gradient forces. Additionally, we determined that the laser tweezers could be used to suspend a crystal for three-dimensional growth under varying conditions. Studies included increasing the protein concentration, thermal cycling, and a diffusion-induced increase in precipitant concentration. Preliminary studies on the use of the tweezers to create a localized seed for growth from polyethylene oxide solutions are also reported.