996 resultados para 14Carbon uptake rate
Resumo:
The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata(Brightwell) Sundström in laboratory experiments. Selected culture conditions (light and CO2(aq)) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) µmol photons/m**2/s. The three CO2(aq) conditions ranged from 8 to 34 µmol/kg CO2(aq) (equivalent to a pCO2 from 137 to 598 µatm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq)] formed spirals, while many cells in high [CO2(aq)] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll aconcentration and photosynthetic yield (FV/FM). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.
Resumo:
We describe interactive effects of total phosphorus (total P = 0.1-4.0 µmol/L; added as H2NaPO4), irradiance (40 and 150 µmol quanta/m**2/s), and the partial pressure of carbon dioxide (P-CO2; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO2- and dinitrogen (N-2)-fixation rates of the unicellular N-2-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated P-CO2 positively affected growth and CO2- and N-2-fixation rates under high light. Under low light, elevated P-CO2 positively affected growth rates at all concentrations of P, but CO2- and N-2-fixation rates were affected by elevated P-CO2 only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO2- and N-2-fixation declined as P-CO2 increased. The minimum concentration (C-min) of total P and half-saturation constant (K-1/2) for growth and CO2- and N-2-fixation rates with respect to total P were reduced by 0.05 µmol/L as a function of elevated P-CO2. We speculate that low P requirements under high P-CO2 resulted from a lower energy demand associated with carbon-concentrating mechanisms in comparison with low-P-CO2 cultures. There was also a 0.10 µmol/L increase in C-min and K-1/2 for growth and N-2 fixation with respect to total P as a function of increasing light regardless of P-CO2 concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO2, and light have both positive and negative interactive effects on growth and CO2-, and N-2-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.