986 resultados para 139-857


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Undoped and Tb3+ (1-10 mol%) doped CeO2 nanophosphors were synthesized by low temperature solution combustion method. The combustion derived products were well studied by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible (UV-Vis) characterizations. The thermoluminescence (TL) glow curves of CeO2: Tb3+ (1-10 mol%) nanophosphors exposed to c source (60Co) for various doses were discussed for the first time. Two TL glow peaks recorded at 182 and 262 degrees C respectively. The TL intensity at 262 degrees C peak increases linearly in the dose range 0.5-7 kGy. Further, this peak was well defined, intense and glow peak structure does not change with c-dose as a result, it was quite useful in TL dosimetry of ionizing radiations. The kinetic parameters associated with the glow peak were estimated using Chen's half width method. The photoluminescence emission (PLE) spectra consists of characteristic peaks at 544 and 655 nm which were attributed to D-5(4) -> F-7(5) and D-5(4) -> F-7(2) transitions of Tb3+ ions. The optimal concentration of Tb3+ ions was found to be 7 mol%. The color co-ordinates of CeO2: Tb3+ (1-10 mol%) located in green region. Hence, this phosphor was quite useful for display applications. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of resonant column tests have been performed in the torsional mode of vibration to assess the effect of saturation, starting from the near dry state to the fully saturated state, on the damping ratio of sands corresponding to the threshold strain level. Tests were carried out on three different gradations of sand for various combinations of relative density and effective confining pressure. For fine sands, a certain optimum degree of saturation exists at which the damping ratio minimizes; it is known that a decrease in Sr from a fully saturated state leads to a continuous increase in the matric suction. With an increase in the relative density, the optimum degree of saturation for fine sand increases marginally from 1.38 to 1.49%, but does not show any dependency on the effective confining pressure. In contrast, the minimum values of the damping ratio for medium and coarse sands are found to always correspond to the near dry state. The damping ratio decreases continuously with increases in relative density and effective confining pressure. The threshold strain level has been found to decrease continuously with increases in relative density and effective confining pressure. (C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvinyl butyral/functionalized mesoporous silica hybrid composite films have been fabricated by solution casting technique with various weight percentages of functionalized silica. A polyol (tripentaerythritol-electron rich component), which acts as an electron donor to the polymer backbone, was added to enhance the conductivity. The prepared composites were characterized by Fourier transformed infrared spectroscopy and the morphology was evaluated by scanning electron microscopy. Dielectric properties of these freestanding composites were studied using the two-probe method. The dielectric constant and impedance value decreased with the increase in applied frequency as well as with the increase in functionalized silica content in the polyvinyl butyral matrix. An increase in conductivity of the PVB/functionalized silica composites was also observed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we analyse three commonly discussed `flaws' of linearized elasticity theory and attempt to resolve them. The first `flaw' concerns cylindrically orthotropic material models. Since the work of Lekhnitskii (1968), there has been a growing body of work that continues to this day, that shows that infinite stresses arise with the use of a cylindrically orthotropic material model even in the case of linearized elasticity. Besides infinite stresses, interpenetration of matter is also shown to occur. These infinite stresses and interpenetration occur when the ratio of the circumferential Young modulus to the radial Young modulus is less than one. If the ratio is greater than one, then the stresses at the center of a spinning disk are found to be zero (recall that for an isotropic material model, the stresses are maximum at the center). Thus, the stresses go abruptly from a maximum value to a value of zero as the ratio is increased to a value even slightly above one! One of the explanations provided for this extremely anomalous behaviour is the failure of linearized elasticity to satisfy material frame-indifference. However, if this is the true cause, then the anomalous behaviour should also occur with the use of an isotropic material model, where, no such anomalies are observed. We show that the real cause of the problem is elsewhere and also show how these anomalies can be resolved. We also discuss how the formulation of linearized elastodynamics in the case of small deformations superposed on a rigid motion can be given in a succinct manner. Finally, we show how the long-standing problem of devising three compatibility relations instead of six can be resolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 11 April 2012 earthquakes (M-w 8.6 and M-w 8.2) were sourced within the Northern Wharton Basin in the northeastern part of the Indo-Australian diffuse plate boundary. This unusually active oceanic intraplate region has generated many large earthquakes in the past, most of which are believed to have occurred by strike-slip motion, triggered by the NW-SE oriented compressional stresses acting across the Indian and Australian plates. In the aftermath of the 2004 megathrust earthquake along the nearby Sunda Trench, increased seismicity in the Northern Wharton Basin is attributed to the stress transfer from the Sumatra-Andaman plate boundary. Models proposed for the April 2012 earthquakes differ somewhat in details but partly attribute their complex rupture to the reactivation of pre-existing structures. These structures include previously mapped N-S trending fracture zones within the Northern Wharton Basin and E-W lineations across the Ninetyeast Ridge. In this paper, we review the regional tectonics and past seismicity on the Indo-Australian Plate in order to understand the seismotectonic setting of the April 2012 Indian Ocean earthquakes. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dy-doped GdOOH microspherical structures were prepared in minutes without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse sphere-like entities with each one representing a three-level hierarchy in its formation. Dy:GdOOH powder samples show a bright blue-green luminescence under UV excitation, making these structures potentially important in the field of optical and luminescent devices. Finally, thermal conversion to the corresponding oxide structures occurs at modest temperatures, spherical morphology intact and with enhanced luminescence behaviour. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this' region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A newly synthesized and crystalographically characterized napthelene-pyrazol conjugate, 1-(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water-DMSO 5 : 1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and H-1 NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15-20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many theories and mechanisms have been proposed to explain the phenomenon of clear-air turbulence (CAT), and some of them have been successful in predicting light, moderate and, in some cases, severe turbulence. It is only recently that skill in the forecasting of the severe form of CAT, which could lead to injuries to passengers and damage to aircraft, has improved. Recent observations and simulations suggest that some severe to extreme turbulence could be caused by horizontal vortex tubes resulting from secondary instabilities of regions of high shear in the atmosphere. We have conducted direct numerical simulations to understand the scale relationship between primary structures (larger-scale structures related to one of the causes mentioned above) and secondary structures (smaller-sized, shear structures of the size of aircraft). From shear layer simulations, we find that the ratio of sizes of primary and secondary vortices is of the right order to generate aircraft-scale vortex tubes from typical atmospheric shear layers. We have also conducted simulations with a mesoscale atmospheric model, to understand possible causes of turbulence experienced by a flight off the west coast of India. Our simulations show the occurrence of primary flow structures related to synoptic conditions around the time of the incident. The evidence presented for this mechanism also has implications for possible methods of detection and avoidance of severe CAT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An organic molecule-o-phenylene diamine (OPD)-is selected as an aldehyde sensing material. It is studied for selectivity to aldehyde vapours both by experiment and simulation. A chemiresistor based sensor for detection of aldehyde vapours is fabricated. An o-phenylene diamine-carbon black composite is used as the sensing element. The amine groups in the OPD would interact with the carbonyl groups of the aldehydes. The selectivity and cross-sensitivity of the OPD-CB sensor to VOCs aldehyde, ketone and alcohol-are studied. The sensor shows good response to aldehydes compared to other VOCs. The higher response for aldehydes is attributed to the interaction of the carbonyl oxygen of aldehydes with-NH2 groups of OPD. The surface morphology of the sensing element is studied by scanning electron microscopy. The OPD-CB sensor is responsive to 10 ppm of formaldehyde. The interaction of the VOCs with the OPD-CB nanocomposite is investigated by molecular dynamics studies. The interaction energies of the analyte with the OPD-CB nanocomposite were calculated. It is observed that the interaction energies for aldehydes are higher than those for other analytes. Thus the OPD-CB sensor shows selectivity to aldehydes. The simulated radial distribution function is calculated for the O-H pair of analyte and OPD which further supports the finding that the amine groups are involved in the interaction. These results suggest that it is important and easy to identify appropriate sensing materials based on the understanding of analyte interaction properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants emit volatile organic compounds (VOCs) from most parts of their anatomy. Conventionally, the volatiles of leaves, flowers, fruits and seeds have been investigated separately. This review presents an integrated perspective of volatiles produced by fruits and seeds in the context of selection on the whole plant. It suggests that fruit and seed volatiles may only be understood in the light of the chemistry of the whole plant. Fleshy fruit may be viewed as an ecological arena within which several evolutionary games are being played involving fruit VOCs. Fruit odour and colour may be correlated and interact via multimodal signalling in influencing visits by frugivores. The hypothesis of volatile crypsis in the evolution of hard seeds as protection against volatile diffusion and perception by seed predators is reviewed. Current views on the role of volatiles in ant dispersal of seeds or myrmecochory are summarised, especially the suggestion that ants are being manipulated by plants in the form of a sensory trap while providing this service. Plant VOC production is presented as an emergent phenotype that could result from multiple selection pressures acting on various plant parts; the ``plant'' phenotype and VOC profile may receive significant contributions from symbionts within the plant. Viewing the plant as a holobiont would benefit an understanding of the emergent plant phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180 degrees C show several emission bands at 400 nm (similar to 3.10 eV), 420 nm (similar to 2.95 eV), 482 nm (similar to 2.57 eV) and 524 nm (similar to 2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with gamma-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at similar to 354 degrees C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.