953 resultados para 13200-030
Resumo:
Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 > 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
Resumo:
Glassy Turonian foraminifera preserved in clay-rich sediments from the western tropical Atlantic yield the warmest equivalent d18O sea-surface temperatures (SSTs) yet reported for the entire Cretaceous-Cenozoic. We estimate Turonian SSTs that were at least as warm as (conservative mean ~30 °C) to significantly warmer (warm mean ~33 °C) than those in the region today. However, if independent evidence for high middle Cretaceous pCO2 is reliable and resulted in greater isotopic fractionation between seawater and calcite because of lower sea-surface pH, our conservative and warm SST estimates would be even higher (32 and 36°C, respectively). Our new tropical SSTs help reconcile geologic data with the predictions of general circulation models that incorporate high Cretaceous pCO2 and lend support to the hypothesis of a Cretaceous greenhouse. Our data also strengthen the case for a Turonian age for the Cretaceous thermal maximum and highlight a 20-40 m.y. mismatch between peak Cretaceous-Cenozoic global warmth and peak inferred tectonic CO2 production. We infer that this mismatch is either an artifact of a hidden Turonian pulse in global ocean-crust cycling or real evidence of the influence of some other factor on atmospheric CO2 and/or SSTs. A hidden pulse in crust cycling would explain the timing of peak Cretaceous-Cenozoic sea level (also Turonian), but other factors are needed to explain high-frequency (~10-100 k.y.) instability in middle Cretaceous SSTs reported elsewhere.
Resumo:
Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (~52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ?1% of the Earth's surface was covered with volcanism, resulted from a thermo-chemical superplume/dome that stalled at the transition zone, similar to but larger than the structure imaged presently beneath the South Pacific superswell. The later alkalic volcanism on the Hikurangi Plateau and the Zealandia micro-continent may have been part of a second large-scale volcanic event that may have also triggered the final breakup stage of Gondwana, which resulted in the separation of Zealandia fragments from West Antarctica.