989 resultados para 130
Resumo:
In this paper a method to determine the internal and external boundaries of planar workspaces, represented with an ordered set of points, is presented. The sequence of points are grouped and can be interpreted to form a sequence of curves. Three successive curves are used for determining the instantaneous center of rotation for the second one of them. The two extremal points on the curve with respect to the instantaneous center are recognized as singular points. The chronological ordering of these singular points is used to generate the two envelope curves, which are potentially intersecting. Methods have been presented in the paper for the determination of the workspace boundary from the envelope curves. Strategies to deal with the manipulators with joint limits and various degenerate situations have also been discussed. The computational steps being completely geometric, the method does not require the knowledge about the manipulator's kinematics. Hence, it can be used for the workspace of arbitrary planar manipulators. A number of illustrative examples demonstrate the efficacy of the proposed method.
Resumo:
Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.
Resumo:
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.
Resumo:
The polyamidoamide (PAMAM) class of dendrimers was one of the first dendrimers synthesized by Tomalia and co-workers at Dow. Since its discovery the PAMAMs have stimulated many discussions on the structure and dynamics of such hyperbranched polymers. Many questions remain open because the huge conformation disorder combined with very similar local symmetries have made it difficult to characterize experimentally at the atomistic level the structure and dynamics of PAMAM dendrimers. The higher generation dendrimers have also been difficult to characterize computationally because of the large size (294852 atoms for generation 11) and the huge number of conformations. To help provide a practical means of atomistic computational studies, we have developed an atomistically informed coarse-grained description for the PAMAM dendrimer. We find that a two-bead per monomer representation retains the accuracy of atomistic simulations for predicting size and conformational complexity, while reducing the degrees of freedom by tenfold. This mesoscale description has allowed us to study the structural properties of PAMAM dendrimer up to generation 11 for time scale of up to several nanoseconds. The gross properties such as the radius of gyration compare very well with those from full atomistic simulation and with available small angle x-ray experiment and small angle neutron scattering data. The radial monomer density shows very similar behavior with those obtained from the fully atomistic simulation. Our approach to deriving the coarse-grain model is general and straightforward to apply to other classes of dendrimers.
Resumo:
Spectral properties of Nd3+ and Dy3+ ions in different phosphate glasses were studied and several spectroscopic parameters were reported. Covalency of rare-earth-oxygen bond was studied in these phosphate glass matrices with the variation of modifier in host glass matrix Using Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), radiative transition probabilities (A) and radiative lifetimes (tau(R)) of certain excited states of Nd3+ and Dy3+ ions are estimated in these glass matrices. From the magnitudes of branching ratios (beta(R)) and integrated absorption cross-sections (Sigma), certain transitions of both the ions are identified for laser excitation. From the emission spectra, peak stimulated emission cross-sections (sigma(P)) are evaluated for the emission transitions observed in all these phosphate glass matrices for both Nd3+ and Dy3+ ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Improved forecasting of urban rail patronage is essential for effective policy development and efficient planning for new rail infrastructure. Past modelling and forecasting of urban rail patronage has been based on legacy modelling approaches and often conducted at the general level of public transport demand, rather than being specific to urban rail. This project canvassed current Australian practice and international best practice to develop and estimate time series and cross-sectional models of rail patronage for Australian mainland state capital cities. This involved the implementation of a large online survey of rail riders and non-riders for each of the state capital cities, thereby resulting in a comprehensive database of respondent socio-economic profiles, travel experience, attitudes to rail and other modes of travel, together with stated preference responses to a wide range of urban travel scenarios. Estimation of the models provided a demonstration of their ability to provide information on the major influences on the urban rail travel decision. Rail fares, congestion and rail service supply all have a strong influence on rail patronage, while a number of less significant factors such as fuel price and access to a motor vehicle are also influential. Of note, too, is the relative homogeneity of rail user profiles across the state capitals. Rail users tended to have higher incomes and education levels. They are also younger and more likely to be in full-time employment than non-rail users. The project analysis reported here represents only a small proportion of what could be accomplished utilising the survey database. More comprehensive investigation was beyond the scope of the project and has been left for future work.
Resumo:
Catalytic activity of cordierite honeycomb by a completely new coating method for the oxidation of major hydrocarbons in exhaust gas is reported here. The new coating process consists of (a) dipping and growing γ-Al2O3 on cordierite by combustion of monolith dipped in the aqueous solution of Al(NO3)3 and oxalyldihydrazide (ODH) (or glycine) at 600 °C and active catalyst phase Ce0.98Pd0.02O2−δ on γ-Al2O3-coated cordierite again by combustion of monolith dipped in the aqueous solution of ceric ammonium nitrate, ODH and 1.2 × 10−3 M PdCl2 solution at 500 °C. Weight of active catalyst can be varied from 0.02 wt% to 2 wt% which is sufficient but can be loaded even up to 12 wt% by repeating dip dry combustion. Adhesion of catalyst to cordierite surface is via oxide growth, which is very strong. ‘HC’ oxidation over the monolith catalyst is carried out with a mixture having the composition, 470 ppm of both propene and propane and 870 ppm of both ethylene and acetylene with the varying amount of O2. Three-way catalytic test is done by putting hydrocarbon mixture along with CO (10 000 ppm), NO (2000 ppm) and O2 (15 000 ppm). Below 350 °C full conversion is achieved. In this method, handling of nano-material powder is avoided.
Resumo:
A polymorphic ASIC is a runtime reconfigurable hardware substrate comprising compute and communication elements. It is a ldquofuture proofrdquo custom hardware solution for multiple applications and their derivatives in a domain. Interoperability between application derivatives at runtime is achieved through hardware reconfiguration. In this paper we present the design of a single cycle Network on Chip (NoC) router that is responsible for effecting runtime reconfiguration of the hardware substrate. The router design is optimized to avoid FIFO buffers at the input port and loop back at output crossbar. It provides virtual channels to emulate a non-blocking network and supports a simple X-Y relative addressing scheme to limit the control overhead to 9 bits per packet. The 8times8 honeycomb NoC (RECONNECT) implemented in 130 nm UMC CMOS standard cell library operates at 500 MHz and has a bisection bandwidth of 28.5 GBps. The network is characterized for random, self-similar and application specific traffic patterns that model the execution of multimedia and DSP kernels with varying network loads and virtual channels. Our implementation with 4 virtual channels has an average network latency of 24 clock cycles and throughput of 62.5% of the network capacity for random traffic. For application specific traffic the latency is 6 clock cycles and throughput is 87% of the network capacity.
Resumo:
It has been an outstanding problem that a semiconducting host in the bulk form can be doped to a large extent, while the same host in the nanocrystal form is found to resist any appreciable level of doping rather stubbornly, this problem being more acute in the wurtzite form compared to the zinc blende one. In contrast, our results based on the lattice parameter tuning in a ZnxCd1−xS alloy nanocrystal system achieves 7.5% Mn2+ doping in a wurtzite nanocrystal, such a concentration being substantially higher compared to earlier reports even for nanocrystal hosts with the “favorable” zinc-blende structure. These results prove a consequence of local strains due to a size mismatch between the dopant and the host that can be avoided by optimizing the composition of the alloyed host. Additionally, the present approach opens up a new route to dope such nanocrystals to a macroscopic extent as required for many applications. Photophysical studies show that the quantum efficiency per Mn2+ ion decreases exponentially with the average number of Mn2+ ions per nanocrystal; en route, a high quantum efficiency of 25% is achieved for a range of compositions.
Resumo:
Background We aimed to assess the effect of afatinib on overall survival of patients with EGFR mutation-positive lung adenocarcinoma through an analysis of data from two open-label, randomised, phase 3 trials. Methods Previously untreated patients with EGFR mutation-positive stage IIIB or IV lung adenocarcinoma were enrolled in LUX-Lung 3 (n=345) and LUX-Lung 6 (n=364). These patients were randomly assigned in a 2:1 ratio to receive afatinib or chemotherapy (pemetrexed-cisplatin [LUX-Lung 3] or gemcitabine-cisplatin [LUX-Lung 6]), stratified by EGFR mutation (exon 19 deletion [del19], Leu858Arg, or other) and ethnic origin (LUX-Lung 3 only). We planned analyses of mature overall survival data in the intention-to-treat population after 209 (LUX-Lung 3) and 237 (LUX-Lung 6) deaths. These ongoing studies are registered with ClinicalTrials.gov, numbers NCT00949650 and NCT01121393. Findings Median follow-up in LUX-Lung 3 was 41 months (IQR 35–44); 213 (62%) of 345 patients had died. Median follow-up in LUX-Lung 6 was 33 months (IQR 31–37); 246 (68%) of 364 patients had died. In LUX-Lung 3, median overall survival was 28·2 months (95% CI 24·6–33·6) in the afatinib group and 28·2 months (20·7–33·2) in the pemetrexed-cisplatin group (HR 0·88, 95% CI 0·66–1·17, p=0·39). In LUX-Lung 6, median overall survival was 23·1 months (95% CI 20·4–27·3) in the afatinib group and 23·5 months (18·0–25·6) in the gemcitabine-cisplatin group (HR 0·93, 95% CI 0·72–1·22, p=0·61). However, in preplanned analyses, overall survival was significantly longer for patients with del19-positive tumours in the afatinib group than in the chemotherapy group in both trials: in LUX-Lung 3, median overall survival was 33·3 months (95% CI 26·8–41·5) in the afatinib group versus 21·1 months (16·3–30·7) in the chemotherapy group (HR 0·54, 95% CI 0·36–0·79, p=0·0015); in LUX-Lung 6, it was 31·4 months (95% CI 24·2–35·3) versus 18·4 months (14·6–25·6), respectively (HR 0·64, 95% CI 0·44–0·94, p=0·023). By contrast, there were no significant differences by treatment group for patients with EGFR Leu858Arg-positive tumours in either trial: in LUX-Lung 3, median overall survival was 27·6 months (19·8–41·7) in the afatinib group versus 40·3 months (24·3–not estimable) in the chemotherapy group (HR 1·30, 95% CI 0·80–2·11, p=0·29); in LUX-Lung 6, it was 19·6 months (95% CI 17·0–22·1) versus 24·3 months (19·0–27·0), respectively (HR 1·22, 95% CI 0·81–1·83, p=0·34). In both trials, the most common afatinib-related grade 3–4 adverse events were rash or acne (37 [16%] of 229 patients in LUX-Lung 3 and 35 [15%] of 239 patients in LUX-Lung 6), diarrhoea (33 [14%] and 13 [5%]), paronychia (26 [11%] in LUX-Lung 3 only), and stomatitis or mucositis (13 [5%] in LUX-Lung 6 only). In LUX-Lung 3, neutropenia (20 [18%] of 111 patients), fatigue (14 [13%]) and leucopenia (nine [8%]) were the most common chemotherapy-related grade 3–4 adverse events, while in LUX-Lung 6, the most common chemotherapy-related grade 3–4 adverse events were neutropenia (30 [27%] of 113 patients), vomiting (22 [19%]), and leucopenia (17 [15%]). Interpretation Although afatinib did not improve overall survival in the whole population of either trial, overall survival was improved with the drug for patients with del19 EGFR mutations. The absence of an effect in patients with Leu858Arg EGFR mutations suggests that EGFR del19-positive disease might be distinct from Leu858Arg-positive disease and that these subgroups should be analysed separately in future trials.
Resumo:
Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The monochloroacetates of lanthanum, praseodymium and neodymium of the composition M(ClCH2COO)3·2H2O have been prepared and characterised. The compounds behave as non-electrolytes in dimethylformamide. The infrared spectra are consistent with bidentate coordination of the carboxylate group and show the presence of two types of water molecules, coordinated, and free. With six oxygen atoms from the three acetato groups and one from the water bonded to the metal, a coordination number of seven has been assigned to the rare earths in these compounds. On pyrolysis, the chloroacetates lose water at ~130 °C and yield the oxychlorides at ~500 °C. The X-ray powder patterns of the chloroacetates have been indexed for the monoclinic system, with four molecules per unit cell.
Resumo:
The nature of the localized modes due to single substitutional impurities in a caesium iodide lattice is investigated using the models of Elliott, Dawber and Maradudin. The infra-red absorption due to U centres and their relation to the lattice spacing is also discussed.
Resumo:
We present a search for standard model (SM) Higgs boson production using ppbar collision data at sqrt(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb-1. We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m_H) in the range from 110 to 200 GeV. These limits are the most stringent for m_H > 130 GeV and are 1.29 above the predicted value of sigma(H) for mH = 165 GeV.
Resumo:
In this article, we present a comparative study of the Raman spectra of alkali halides in relation to the lattice dynamics ofBorn andRaman. It is shown that the experimentally observed limit of the second-order spectra in almost all the cases can be explained well by the Lyddane-Sachs-Teller relation. It is also seen, while, an explanation of the second-order Raman spectrum of a crystal of diamond or zinc blende structure requires the frequencies from the critical points,W, Gamma, X andL inBorn's analysis, the frequencies fromGamma, X andL alone are sufficient and necessary for an interpretation of the same onRaman's model. Some similarities in the determination of the long wave properties of crystals like elastic constants and limiting frequencies of the lattice vibrations in the symmetry directions in both the models are pointed out.