991 resultados para 106-115 cm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the results of a study of the stable isotopic and chemical composition of secondary carbonate minerals precipitated within basalts at Ocean Drilling Program Sites 707 and 715. At Site 715, the secondary carbonates are all composed of calcite and display a narrow range of carbon and oxygen stable isotope ratios, with values ranging from -2.75 per mil to 1.95 per mil PDB and -0.27 per mil to 2.86 per mil PDB, respectively. Strontium, iron, and manganese values of the samples are generally low. The geochemistry of Site 715 samples indicates that they precipitated from seawater-domi- nated fluids, at low temperatures, as is typical of secondary carbonates from most Deep Sea Drilling Project sites. In contrast, at Site 707, aragonite, siderite, and manganese-rich calcite occur as secondary carbonates in addition to calcite. The carbon isotopes of the Site 707 carbonates of all rock types are depleted in 13C. Values range from -2.79 per mil to -16.43 per mil PDB. Oxygen isotope values do not show a wide variation, ranging from -1.78 per mil to 1.17 per mil. The strontium contents of the samples range from 5200 to 8100 ppm for aragonites, and from 145 to 862 ppm for calcites. Iron and manganese contents are high in calcites and siderites and low in aragonites. Site 707 carbonates precipitated at low temperatures in a fairly closed system, in which basalt-seawater interaction has greatly influenced the chemistry of the pore fluids. The reactions occurring within the system before and in conjunction with secondary carbonate precipita- tion include oxidation of isotopically light methane, derived from fluids circulating within the basalts, and reduction of substantial amounts of iron and manganese oxides from the basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81°N and 83°N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several meters of unconsolidated hydrothermal sediment were recovered from the Snake Pit hydrothermal field during ODP Leg 106. Polymetallic sulfides comprise most of the sediment with minor fragments of massive sulfide, organic debris, clay minerals, and fresh glass shards. Trace element and Sr-isotope contents of hydrothermal clays and sulfides from Holes 649B and 649G indicate that these minerals precipitated from a mixed hydrothermal fluid-seawater solution. Evaluation of the REE mineral data and the Snake Pit hydrothermal fluids shows that the REE distribution coefficients between the hydrothermal fluids and clay-sulfide mixes range from 100-500. This indicates that hydrothermal fluids originating in the root-zone of the Snake Pit hydrothermal system may be modified by the precipitation of hydrothermal minerals, either in the shallow subsurface or within chimney structures. Contrasting REE profiles of clay-sulfide aggregates and massive sulfides from Holes 649B and 649G may be accounted for by spatial and/or temporal variations in redox conditions in the plumbing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of serpentinized peridotites from Hole 670A of Leg 109 were studied in detail. A small piece of relatively unaltered sample, 109-670A-9R-1, #3 (22-24 cm), is olivine websterite characterized by aluminous chromian spinel with Cr/(Cr + Al) ratio of about 0.2. The other minerals have compositions essentially identical with those in more commonly observed serpentinized harzburgite like 109-670A-9R-01, #12 (94-97 cm). The occurrence of pyroxene-rich peridotite with normal harzburgite suggests that small scale heterogeneity in modal compositions exists in the upper mantle beneath the Mid-Atlantic Ridge. Low Cr/Al ratios of spinel and pyroxenes of those peridotites indicate that they are relatively less refractory among peridotites ever recovered from the oceanic region. Textures and the estimated equilibration temperatures indicate that peridotites recovered from Hole 670A are recrystallized and reequilibrated at subsolidus temperature. The occurrence of serpentinized peridotites from the rift valley of the active mid-oceanic ridge may suggest that they represent direct exposure of upwelling mantle materials rather than serpentine diapirs.