959 resultados para “Bone regeneration” AND “dental implants”


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In addition to prosthetic rehabilitation, maxillary defects can also be surgically reconstructed. Soft-tissue reconstruction employs a radial forearm or latissimus dorsi muscle flap, while bony reconstruction can be achieved using a fibula, iliac crest, or scapular flap. Reconstruction using a scapular flap is further divided into two subgroups: the traditional scapular flap with the circumflex scapular artery as the donor vessel and the scapular angle flap with the angular artery originating from the thoracodorsal artery as the donor vessel. MATERIALS AND METHODS: We report on four patients who underwent successful reconstruction with a free scapular angle flap between 2009 and 2011, following maxillary resection due to malignancy. RESULTS: Vertical positioning of the scapular angle flap enables reconstruction of the facial contour, whereas its horizontal alignment and microvascular anastomosis makes a bony reconstruction of the hard palate possible. CONCLUSIONS: The versatility, low rate of donor site morbidity and shape of the scapular angle flap--which resembles that of the hard palate--render it ideal for plastic reconstruction. The suitability of bone quality for dental rehabilitation with implants is a topic of controversial discussion. The scapular angle flap represents an alternative to obturator prosthesis for the reconstruction of maxillary defects ≥ grade I according to Okay et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 1985 and 1990 we treated 11 large segmental bone defects (average 6.7 cm) in ten patients with the Ilizarov technique. Open fractures, type III according to Gustilo, represented the largest group (8 of 11 cases). The average delay before the Ilizarov technique was initiated was 8.9 months. The external fixator was usually maintained for 1 year. Bone regeneration was obtained in every case. Consolidation was not fulfilled with this technique in three cases. The complications observed were one refracture, four leg-length discrepancies (average 1.5 cm), and five axial deformities exceeding 5 degrees. No pin-track infection was observed. In our limited series of four type IIIC open fractures treated by the Ilizarov technique, no patients required amputation. The Ilizarov technique is particularly useful in the treatment of large bone defects, without major complications, especially if there is an adequate initial debridement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary For the nutritional management of bone health and the prevention of osteoporosis it is important to identify nutrients that positively influence the bone remodeling process at the cellular level. Soy isoflavones show promising osteoprotective effects in animals and humans but their mechanism of action in bone cells is yet poorly understood. Firstly, soy tissue cultures were characterized as a new and optimized source of isoflavones. A large variability in the isoflavone content was observed and high-producing strains (46.3 mg/g dry wt isoflavones) were identified. In the Ishikawa cells bioassay, the estrogenicity of isoflavones was confirmed to be 1000 to 10000 less than 17Mestradiol and that of the malonyl forms was shown for the first time (EC50 of 350 nM and 1880 nM for malonylgenistin and malonyldaidzin, respectively). The estrogenic activity of soya tissue culture extracts correlated to their isoflavone content. Secondly, the effects of phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway, as key mediators of bone formation, were investigated. Dietary achievable concentrations of genistein and daidzein (10vM), and statins (4xM) but not 17M estradiol (10nM), induced BMP-2 gene expression (by up to 3-fold) and inhibited the cholesterol biosynthetic pathway (by up to 50%) in the human osteoblastic cell line hP0B¬tert. In addition, several plant extracts (Cyperus rotundus, Lindera benzoin and Cnidium monnieri) induced BMP-2 gene expression but this induction was not restricted to the inhibition of the cholesterol synthesis pathway neither to the estrogenicity. Finally, the gene expression profiles during hP0B-tert differentiation induced by vitamin D and dexamethasone were analyzed with the Affymetrix human GeneChip. 1665 different genes and 98 ESTs were significantly regulated. The expression profiles of bone-related genes was largely in agreement with previously documented patterns, supporting the physiological relevance of the genomic results and the hP0B-tert cell line as a valid model of human osteoblast differentiation. The expression of alternative differentiation markers during the osteogenic treatment of hP0B-tert cells indicated that the adipocyte and myoblast differentiation pathways were repressed, confirming that these culture conditions allowed only osteoblast differentiation. The gene ontology analysis identified further sub-groups of genes that may be involved in the bone formation process. Aims of the thesis In order to define new strategies for the nutritional management of bone health and for the prevention of osteoporosis the major goal of the present work was to investigate the potential of phytonutrients to positively modulate the bone formation process at the cellular level and, in particular: 1.To select and optimise alternative plant sources containing high levels of isoflavones with estrogenic activity (Chapter 3). 2.To compare the effects of statins and phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway and to select new plant extracts with a bone anabolic potential (Chapter 4). 3.To further characterize the new human periosteal cell line, hP0B-tert, as a bone- formation model, by elucidating its gene expression profile during differentiation induced by vitamin D and dexamethasone (Chapter 5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Metastases are detected in 20% of patients with solid tumours at diagnosis and a further 30% after diagnosis. Radiation therapy (RT) has proven effective in bone (BM) and brain (BrM) metastases. The objective of this study was to analyze the variability of RT utilization rates in clinical practice and the accessibility to medical technology in our region. PATIENTS AND METHODS We reviewed the clinical records and RT treatment sheets of all patients undergoing RT for BM and/or BrM during 2007 in the 12 public hospitals in an autonomous region of Spain. Data were gathered on hospital type, patient type and RT treatment characteristics. Calculation of the rate of RT use was based on the cancer incidence and the number of RT treatments for BM, BrM and all cancer sites. RESULTS Out of the 9319 patients undergoing RT during 2007 for cancer at any site, 1242 (13.3%; inter-hospital range, 26.3%) received RT for BM (n = 744) or BrM (n = 498). These 1242 patients represented 79% of all RT treatments with palliative intent, and the most frequent primary tumours were in lung, breast, prostate or digestive system. No significant difference between BM and BrM groups were observed in: mean age (62 vs. 59 yrs, respectively); gender (approximately 64% male and 36% female in both); performance status (ECOG 0-1 in 70 vs. 71%); or mean distance from hospital (36 vs. 28.6 km) or time from consultation to RT treatment (13 vs. 14.3 days). RT regimens differed among hospitals and between patient groups: 10 × 300 cGy, 5 × 400 cGy and 1x800cGy were applied in 32, 27 and 25%, respectively, of BM patients, whereas 10 × 300cGy was used in 49% of BrM patients. CONCLUSIONS Palliative RT use in BM and BrM is high and close to the expected rate, unlike the global rate of RT application for all cancers in our setting. Differences in RT schedules among hospitals may reflect variability in clinical practice among the medical teams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to understand the mechanisms that enable peripheral neurons to regenerate after nerve injury in order to identify methods of improving this regeneration. Therefore, we studied nerve regeneration and sensory impairment recovery in the cutaneous lesions of leprosy patients (LPs) before and after treatment with multidrug therapy (MDT). The skin lesion sensory test results were compared to the histopathological and immunohistochemical protein gene product (PGP) 9.5 and the p75 nerve growth factor receptors (NGFr) findings. The cutaneous neural occupation ratio (CNOR) was evaluated for both neural markers. Thermal and pain sensations were the most frequently affected functions at the first visit and the most frequently recovered functions after MDT. The presence of a high cutaneous nerve damage index did not prevent the recovery of any type of sensory function. The CNOR was calculated for each biopsy, according to the presence of PGP and NGFr-immunostained fibres and it was not significantly different before or after the MDT. We observed a variable influence of MDT in the recovery from sensory impairment in the cutaneous lesions of LPs. Nociception and cold thermosensation were the most recovered sensations. The recovery of sensation in the skin lesions appeared to be associated with subsiding inflammation rather than with the regenerative activity of nerve fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different cell sources for bone tissue engineering are reviewed. In particular, adult cell source strategies have been based on the implantation of unfractionated fresh bone marrow; purified, culture expanded mesenchymal stem cells, differentiated osteoblasts, or cells that have been modified genetically to express rhBMP. Several limiting factors are mentioned for these strategies such as low number of available cells or possible immunological reaction of the host. Foetal bone cells are presented as an alternative solution and review of actual treatments using these cells is presented. Finally, foetal cells used specifically for bone tissue engineering are characterised and potentially interesting therapeutic options are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm(3) for the anatomical prosthesis, but 44.6 mm(3) for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.