991 resultados para [NH4]
Resumo:
The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.
Resumo:
Will be submitted by the author
Resumo:
Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)
Resumo:
The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
Geochemical barrier zones play an important role in determining various physical systems and characteristics of oceans, e.g. hydrodynamics, salinity, temperature and light. In the book each of more than 30 barrier zones are illustrated and defined by physical, chemical and biological parameters. Among the topics discussed are processes of inflow, transformation and precipitation of the sedimentary layer of the open oceans and more restricted areas such as the Baltic, Black and Mediterranean Seas.
Resumo:
The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1-100 pmol/cm**3/d) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.
Resumo:
Potato crop cycle is relatively short and presents high yield per area; therefore, it is a very demanding culture for available nutrients in the soil solution. Despite its importance and the large number of studies about the crop, there is little research on plant nutrition regarding the use of organomineral fertilizer. This study evaluated potato, cv. Cupid, development and productivity as a function of fertilization with pelletized organomineral fertilizer. The experiment was done in Perdizes, Minas Gerais, in the rainy season of 2014/2015. The experimental design was a randomized blocks, with factorial arrangement of 4 x 2 (doses x management) and a control with mineral fertilizer, with 3 repetitions. Organomineral fertilizer doses were 25, 50, 75 and 100% of the conventional mineral dose, which was 600 kg ha-1 K2SO4, 850 kg ha-1 NH4H2PO4, and 300 kg ha-1 (NH4)2SO4 of topdressing 19 days after planting (DAP). Fertilization managements were with or without topdressing at 19 DAP, when the potato was hilled. Two plants per plot were sampled at 36, 50, 64 and 81 DAP and analyzed for leaf, stem and dry matter contents. DRIS - Diagnosis and Recommendation Integrated System was applied at 36 DAP and the potatoes were harvested 112 DAP and subjected to tuber classification. Throughout the cycle, stem, leaf and tuber dry mass showed no significant differences between the fertilization managements. The doses of organomineral fertilizer and topdressing management does not affect productivity, and the lower doses (25%) were similar the greater ones and the control, with an average of 16.8 t ha-1, demonstrating that it is viable to make a single application of organomineral fertilizer at planting due to operational efficiency. The low yields observed were due to high rainfall and temperature, creating favorable conditions for the incidence of pests and diseases. According to DRIS, the organomineral dose 75% for topdressing, presented the best nutritional balance.
Resumo:
We review our recent work on the anodization of InP in KOH electrolytes. The anodic oxidation processes are shown to be remarkably different in different concentrations of KOH. Anodization in 2 - 5 mol dm-3 KOH electrolytes results in the formation of porous InP layers but, under similar conditions in a 1 mol dm-3 KOH, no porous structure is evident. Rather, the InP electrode is covered with a thin, compact surface film at lower potentials and, at higher potentials, a highly porous surface film is formed which cracks on drying. Anodization of electrodes in 2 - 5 mol dm-3 KOH results in the formation of porous InP under both potential sweep and constant potential conditions. The porosity is estimated at ~65%. A thin layer (~ 30 nm) close to the surface appears to be unmodified. It is observed that this dense, near-surface layer is penetrated by a low density of pores which appear to connected it to the electrolyte. Well-defined oscillations are observed when InP is anodized in both the KOH and (NH4)2S. The charge per cycle remains constant at 0.32 C cm-2 in (NH4)2S but increases linearly with potential in KOH. Although the characteristics of the oscillations in the two systems differ, both show reproducible and well-behaved values of charge per cycle.
Resumo:
The observation of current oscillations under potential sweep conditions when an n-InP electrode is anodized in a KOH electrolyte is reported and compared to the oscillatory behavior noted during anodization in an (NH4)2S electrolyte. In both cases oscillations are observed above 1.7 V (SCE). The charge per cycle was found to increase linearly with potential for the InP/KOH system but was observed to be independent of potential for the InP/(NH4)2S system. The period of the oscillations in the InP/KOH was found to increase with applied potential. In this case the oscillations are asymmetrical and the rising and falling segments have a different dependence on potential. Although the exact mechanism is not yet know for either system, transmission electron microscopy studies show that in both cases, the electrode is covered by a thick porous film in the oscillatory region.
Resumo:
The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH.
Resumo:
As silicon based devices in integrated circuits reach the fundamental limits of dimensional scaling there is growing research interest in the use of high electron mobility channel materials, such as indium gallium arsenide (InGaAs), in conjunction with high dielectric constant (high-k) gate oxides, for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based devices. The motivation for employing high mobility channel materials is to reduce power dissipation in integrated circuits while also providing improved performance. One of the primary challenges to date in the field of III-V semiconductors has been the observation of high levels of defect densities at the high-k/III-V interface, which prevents surface inversion of the semiconductor. The work presented in this PhD thesis details the characterization of MOS devices incorporating high-k dielectrics on III-V semiconductors. The analysis examines the effect of modifying the semiconductor bandgap in MOS structures incorporating InxGa1-xAs (x: 0, 0.15. 0.3, 0.53) layers, the optimization of device passivation procedures designed to reduce interface defect densities, and analysis of such electrically active interface defect states for the high-k/InGaAs system. Devices are characterized primarily through capacitance-voltage (CV) and conductance-voltage (GV) measurements of MOS structures both as a function of frequency and temperature. In particular, the density of electrically active interface states was reduced to the level which allowed the observation of true surface inversion behavior in the In0.53Ga0.47As MOS system. This was achieved by developing an optimized (NH4)2S passivation, minimized air exposure, and atomic layer deposition of an Al2O3 gate oxide. An extraction of activation energies allows discrimination of the mechanisms responsible for the inversion response. Finally a new approach is described to determine the minority carrier generation lifetime and the oxide capacitance in MOS structures. The method is demonstrated for an In0.53Ga0.47As system, but is generally applicable to any MOS structure exhibiting a minority carrier response in inversion.
Resumo:
Two mesocosm experiments, PAME-I and PAME-II were conducted in 2007 and 2008 to investigate fate of organic carbon in the arctic microbial food web. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. In PAME-I eight units (each 700 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1 and 3 times Redfield ratio in terms of carbon relative to the nitrogen and phosphorus additions) (Fig. 1). All the eight units also got a daily dose of NH4+ and PO4**3- in Redfield ratio. Two gradients were set up, one with silicate addition, performed in the Arctic location Ny Ã…lesund, Svalbard, have previously been reported to give different food-web level responses to similar nutrient perturbations. In PAME-II all ten units (each 900 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1, 2 and 3 times Redfield ratio in terms of carbon relative to nitrogen and phosphorus additions). The two gradients in glucose were kept silicate replete. NH4+ was used as the DIN source in one gradient (units 1 to 5) and NO3- in the other (units 6-9). All units got a daily dose of PO4**3- in Redfield ratio. Prokaryotes and viruses were measured by flow cytometry, while ciliate abundances were counted using a Flow Cam. Viral and bacterial diversity was measured by PFGE and DGGE, respectively. In PAME-II the abundance of ciliates was lower than in PAME-I, presumably caused by higher copepod grazing. The abundances of prokaryotes and viruses were also lower in PAME-II compared to PAME-I. Further, less diversity was detected in the viral community (FCM and PFGE) in PAME-II, and no response was observed in the bacterial community structure due to addition of organic carbon.
Resumo:
I obtained 68 quarter sections of cores from the JOIDES Organic Geochemistry Panel for studying type, distribution, and stages of organic diagenesis of sedimentary organic matter in the West Philippine and Parece Vela basins and Mariana Trough area (Figure 1). The present chapter compares (1) 11 geochemical parameters used to determine organic source and its stage of genesis within the 9 site locations in this study area and (2) compares these 11 with the same parameters reported from Leg 56, outer trench slope of the Japan Trench, and Leg 60, Mariana Trough and Trench (Schorno, in press a, b). Even though these sediments are considered pelagic, the organic content in most of the core sections appears to be hemipelagic. The sedimentary organic matter in these cores is believed to be in an early stage of diagenesis. Both conclusions are based primarily on the fl-alkane distribution within the organic matter. This particular parameter, I note later, has a major weakness. As Hunt (Hunt, 1979) and I (in press b) observed, marine organisms synthesize /z-alkanes with distributions containing neither odd nor even preferences. Thus those sediments that did contain w-alkane distributions with OEP near 1, suggesting a late stage of catagenesis, may in actuality be immature marine sediments.
Resumo:
Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N2-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ~20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.