999 resultados para "Mno"-cao-mgo-sio2-al2o3
Resumo:
Las rocas efusivas formadas por la actividad volcánica del volcán Basilé constituyen la principal fuente de áridos naturales de la Isla de Bioko, en Guinea Ecuatorial. El auge alcanzado por la construcción en la ciudad de Malabo, Malabo II y Malabo III, son un testimonio concluyente del volumen de áridos empleado para erigir los nuevos polígonos, urbanizaciones, infraestructura portuaria, carreteras, presas, alcantarillados y paseos marítimos. Gran parte de los materiales de construcción, fundamentalmente el cemento, procede de las importaciones, mientras que las rocas y minerales industriales autóctonos se conocen poco, opacados por el papel hegemónico del petróleo y el gas natural. El desconocimiento casi absoluto de las propiedades químicas, petrográficas y mecánicas de estas rocas, y la existencia de un sistema normativo pobre, ha provocado su uso indiscriminado y una controvertida calidad en la elaboración de los productos finales. Asimismo, la falta de experiencia en ingeniería y geotecnia para el desarrollo de minas y canteras, y la intermitencia de una ley de minas poco consolidada, ha favorecido la germinación indiscriminada de un gran número de excavaciones, propensas a continuos derrumbes y a la producción de impactos medioambientales irreversibles. La presente contribución científica se ha marcado como objetivo mostrar los resultados obtenidos del análisis y caracterización de estas formaciones volcánicas, así como su posible aprovechamiento industrial mediante el aporte de datos sobre sus propiedades puzolánicas e idoneidad en la elaboración de morteros. Los datos indican que estas rocas eruptivas, fundamentalmente escorias y flujos de lavas de composición basáltica, son capaces de sustituir al cemento pórtland normal hasta en un 25%, favoreciendo el incremento de las resistencias mecánicas normales con valores que sobrepasan los 37 Mpa a 28 días. El análisis de las muestras mediante el método de la puzolanicidad a 7 días dejó establecido el carácter puzolánico de estas rocas, que fue corroborado por la interpretación de citados ensayos mecánicos. El estudio de la composición química detectó contenidos en SiO2 (44,40%), Al2O3 (15,58%), CaO (9,32%), MgO (4,25%) y Fe2O3 (13,63%), y cantidades despreciables de azufre, sulfatos y materia orgánica. Los análisis de difracción de rayos x revelaron la presencia mayoritaria de una fase compuesta por feldespato, y una fase subordinada constituida por cuarzo, hematita y dolomita. El estudio mediante microscopía electrónica de barrido permitió comprobar la ausencia casi total de las especies vítreas. Los resultados que se presentan en este trabajo, podrían devenir en información útil para el posible emplazamiento de una fábrica de cemento puzolánico en la Isla de Bioko; la actual fábrica Abayak, única en Guinea Ecuatorial, y que se encuentra situada en la parte continental del país, no aporta suficiente producción para las demandas cada vez mayores de la construcción.
Resumo:
Chemical interactions between seawater and the oceanic crust have been widely investigated during recent years. However, most of these studies concern the uppermost volcanic part of the crust. The contribution of the underlying sheeted dike complex to the global budget of the oceans is inferred solely from some ophiolite studies and from the 500-m high-level dike section of DSDP/ODP 504B which was drilled in 1981. Hole 504B is the only place where a continuous and long (1260 m) section in the sheeted dike complex has been cored, and it is now regarded as a reference section for the upper oceanic crust. Many petrological and chemical data from these dolerites are available, including the relative proportions of veins, extensively altered adjacent rocks, and less altered 'host-rocks'. For these three reasons, considering the entire dike section penetrated by Hole 504B is a unique chance to study chemical fluxes related to hydrothermal alteration of this part of the oceanic crust. The calculation of any chemical flux implies knowledge of the chemical composition of the fresh precursor (protolith). Previously, mean compositions of glasses (=P1a) or basalts from the Hole 504B volcanics have been used as protoliths. In this paper, we calculate and discuss the use of various protoliths based on dolerites from Hole 504B. We show that the most adequate and realistic protolith is the mean of individual protoliths that we calculated from the acquisition, by automatic mode, of about 1000 microprobe analyses in each thin-section of dolerite from the Hole 504B lower dikes. Consequently, PFm is further used to calculate chemical fluxes in the dike section of Hole 504B. The chemical compositions of the host-rocks adjacent to alteration halos tend to converge to that of PFm with depth, except for Fe2O3t and TiO2. Because the volume percent of alteration halos increases with depth, the total fluxes related to these halos increase with depth. This explains why the mean flux (host-rocks+halos+veins) of the upper dikes is roughly similar to the mean flux of the lower dikes. During the alteration of the entire Hole 504B dike section, the dolerites gained relatively large quantities of Fe2O3t (+4.0 g/100 cm**3) and released much SiO2 (-6.8 g/100 cm**3), CaO (-5.8 g/100 cm**3), and TiO2 (1.6 g/100 cm**3), and minor Al2O3 (-0.7 g/100 cm**3) and MgO (-0.7 g/100 cm**3). We show the importance of the choice of the protolith in the calculation of chemical budget, particularly for elements showing low flux values. In Hole 504B, the Mg uptake by the volcanics during low temperature alteration added to the Mg release by the dikes gives a net flux of -0.07x10**14 g/year. We propose that part of the Mg uptake by the oceanic crust, which is necessary to compensate the rivers input (-1.33x10**14 g/year), occurs in the underlying gabbros and/or in sections which are altered such as Trinity and Troodos ophiolites. Compared with ophiolites, fluxes calculated for elements other than Mg for the entire crust are generally similar (in tendency, if not in absolute value) to that we obtained from Hole 504B.